Home
Class 12
MATHS
The tangent, represented by the graph of...

The tangent, represented by the graph of the function `y=f(x),` at the point with abscissa x = 1 form an angle of `pi//6`, at the point x = 2 form an angle of `pi//3` and at the point x = 3 form and angle of `pi//4`. Then, find the value of,
`int_(1)^(3)f'(x)f''(x)dx+int_(2)^(3)f''(x)dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the value of the expression: \[ I = \int_{1}^{3} f'(x) f''(x) \, dx + \int_{2}^{3} f''(x) \, dx \] ### Step 1: Find the values of \( f'(x) \) We know that the slope of the tangent line at a point on the curve \( y = f(x) \) is given by \( f'(x) = \tan(\theta) \), where \( \theta \) is the angle the tangent makes with the positive x-axis. 1. At \( x = 1 \), the angle is \( \frac{\pi}{6} \): \[ f'(1) = \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \] 2. At \( x = 2 \), the angle is \( \frac{\pi}{3} \): \[ f'(2) = \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] 3. At \( x = 3 \), the angle is \( \frac{\pi}{4} \): \[ f'(3) = \tan\left(\frac{\pi}{4}\right) = 1 \] ### Step 2: Evaluate the first integral \( \int_{1}^{3} f'(x) f''(x) \, dx \) Using integration by parts, we can express the integral as follows: \[ \int f'(x) f''(x) \, dx = \frac{1}{2} (f'(x))^2 + C \] Thus, we have: \[ \int_{1}^{3} f'(x) f''(x) \, dx = \left[ \frac{1}{2} (f'(x))^2 \right]_{1}^{3} \] Calculating this: \[ = \frac{1}{2} (f'(3))^2 - \frac{1}{2} (f'(1))^2 \] Substituting the values we found: \[ = \frac{1}{2} (1)^2 - \frac{1}{2} \left(\frac{1}{\sqrt{3}}\right)^2 \] \[ = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{3} \] \[ = \frac{1}{2} - \frac{1}{6} = \frac{3}{6} - \frac{1}{6} = \frac{2}{6} = \frac{1}{3} \] Let \( I_1 = \frac{1}{3} \). ### Step 3: Evaluate the second integral \( \int_{2}^{3} f''(x) \, dx \) Integrating \( f''(x) \): \[ \int_{2}^{3} f''(x) \, dx = \left[ f'(x) \right]_{2}^{3} = f'(3) - f'(2) \] Substituting the values: \[ = 1 - \sqrt{3} \] Let \( I_2 = 1 - \sqrt{3} \). ### Step 4: Combine the results Now we can find the total value of \( I \): \[ I = I_1 + I_2 = \frac{1}{3} + (1 - \sqrt{3}) \] \[ = \frac{1}{3} + 1 - \sqrt{3} = \frac{1}{3} + \frac{3}{3} - \sqrt{3} = \frac{4}{3} - \sqrt{3} \] ### Final Answer Thus, the value of the expression is: \[ \boxed{\frac{4}{3} - \sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|6 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise SINGLE OPTION CORRECT TYPE QUESTIONS|9 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|4 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|27 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx

Find the value of int_(-pi/3)^(pi/3)(pi+4x^3)/(2-cos(|x|+pi/3))dx

L e tf(x)=x^3-(3x^2)/2+x+1/4 Then the value of (int_(1/4)^(3/4)f(f(x))dx)^(-1) is____

If the normal to the curve y=f(x) at the point (3,4) makes an angle (3pi)/4 with the positive x-axis, then f'(3)= (a) -1 (b) -3/4 (c) 4/3 (d) 1

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

If for non zero x , 3f(x)+4f((1)/(x))=(1)/(x)-10 , then the value of int_(2)^(3)f(x)dx is

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_-1^(2)f(x)dxdot

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_2^(-1)f(x)dxdot

If fx=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to