Home
Class 12
MATHS
If y = f(x) is a curve and if there exis...

If `y = f(x)` is a curve and if there exists two points `A(x_1, f(x_1))` and `B (x_2,f(x_2))` on it such that `f'(x_1) = -1/( f(x_2))`, then the tangent at `x_1` is normal at `x_2` for that curve. Number of such lines on the curve y=sinx is

A

(a)1

B

(b)0

C

(c)2

D

(d)Infinite

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|6 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise SINGLE OPTION CORRECT TYPE QUESTIONS|9 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|4 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|27 Videos

Similar Questions

Explore conceptually related problems

If y=f(x) is a curve and if there exists two points A(x_(1),f(x_(1)) and B(x_(2),f(x_(2)) on it such that f'(x_(1))=-(1)/(f'(x_(2)))=(f(x_(2))-f(x_(1)))/(x_(2)-x_(1)) , then the tangent at x_(1) is normal at x_(2) for that curve. Now, anwer the following questions. Number of such lines on the curve y^(2)=x^(3) , is

If y=f(x) is a curve and if there exists two points A(x_(1),f(x_(1)) and B(x_(2),f(x_(2)) on it such that f'(x_(1))=-(1)/(f'(x_(2)))=(f(x_(2))-f(x_(1)))/(x_(2)-x_(1)) , then the tangent at x_(1) is normal at x_(2) for that curve. Now, anwer the following questions. Number of such lines on the curve y=|lnx|, is

If f(x) is a real valued and differentaible function on R and f(x+y)=(f(x)+f(y))/(1-f(x)f(y)) , then show that f'(x)=f'(0)[1+t^(2)(x)].

The differentiable function y= f(x) has a property that the chord joining any two points A (x _(1), f (x_(1)) and B (x_(2), f (x _(2))) always intersects y-axis at (0,2 x _(1)x _(2)). Given that f (1) =-1. then: In which of the following intervals, the Rolle's theorem is applicable to the function F (x) =f (x) + x ? (a) [-1,0] (b) [0,1] (c) [-1,1] (d) [0,2]

Find the equations of the tangent and the normal to the curve y^2=4a x at (x_1,\ y_1) at indicated points.

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

A curve y=f(x) passes through point P(1,1) . The normal to the curve at P is a (y-1)+(x-1)=0 . If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, then the equation of the curve is

If y = f(x) = (x+2)/(x-1) , x ne1 , then show that x = f(y) .

Given the curves y=f(x) passing through the point (0,1) and y=int_(-oo)^(x) f(t) passing through the point (0,(1)/(2)) The tangents drawn to both the curves at the points with equal abscissae intersect on the x-axis. Then the curve y=f(x), is