Home
Class 12
MATHS
Let f(x)=int(0)^(x)(|t-1|-|t+2|+t-2)dt, ...

Let `f(x)=int_(0)^(x)(|t-1|-|t+2|+t-2)dt`, such that `f''(a)ne1`. If vectors `a hati-b^(2)hatj and hati+3bhatj` are parallel for atleast one a, then
Number of integral value of 'b' can be

A

5

B

10

C

11

D

13

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) and the conditions given regarding the vectors. Let's break down the steps: ### Step 1: Define the function \( f(x) \) We start with the function defined as: \[ f(x) = \int_{0}^{x} (|t-1| - |t+2| + t - 2) \, dt \] ### Step 2: Simplify the integrand To evaluate the integral, we need to consider the absolute values in the integrand. We will analyze the expression \( |t-1| - |t+2| + t - 2 \) based on the critical points \( t = -2 \) and \( t = 1 \). 1. **For \( t < -2 \)**: \[ |t-1| = -(t-1) = -t + 1, \quad |t+2| = -(t+2) = -t - 2 \] Thus, \[ |t-1| - |t+2| + t - 2 = (-t + 1) - (-t - 2) + t - 2 = 1 + 2 - 2 = 1 \] 2. **For \( -2 \leq t < 1 \)**: \[ |t-1| = -(t-1) = -t + 1, \quad |t+2| = t + 2 \] Thus, \[ |t-1| - |t+2| + t - 2 = (-t + 1) - (t + 2) + t - 2 = -2t - 3 + t = -t - 3 \] 3. **For \( t \geq 1 \)**: \[ |t-1| = t - 1, \quad |t+2| = t + 2 \] Thus, \[ |t-1| - |t+2| + t - 2 = (t - 1) - (t + 2) + t - 2 = -1 - 2 = -3 \] ### Step 3: Set up the piecewise function for \( f(x) \) Now we can express \( f(x) \) as a piecewise function based on the intervals derived: 1. **For \( x < -2 \)**: \[ f(x) = \int_{0}^{x} 1 \, dt = x \] 2. **For \( -2 \leq x < 1 \)**: \[ f(x) = \int_{0}^{-2} 1 \, dt + \int_{-2}^{x} (-t - 3) \, dt = -2 + \left[-\frac{t^2}{2} - 3t\right]_{-2}^{x} \] Evaluating this gives: \[ = -2 + \left(-\frac{x^2}{2} - 3x + 4 + 6\right) = -\frac{x^2}{2} - 3x + 8 \] 3. **For \( x \geq 1 \)**: \[ f(x) = \int_{0}^{-2} 1 \, dt + \int_{-2}^{1} (-t - 3) \, dt + \int_{1}^{x} (-3) \, dt \] Evaluating this gives: \[ = -2 + 4 + 6 - 3(x - 1) = 8 - 3x \] ### Step 4: Find the second derivative \( f''(x) \) Now we calculate \( f''(x) \) for each piece: 1. **For \( x < -2 \)**: \( f'(x) = 1 \) and \( f''(x) = 0 \) 2. **For \( -2 \leq x < 1 \)**: \( f'(x) = -x - 3 \) and \( f''(x) = -1 \) 3. **For \( x \geq 1 \)**: \( f'(x) = -3 \) and \( f''(x) = 0 \) ### Step 5: Analyze the condition \( f''(a) \neq 1 \) From our analysis, \( f''(a) \) can only be \( 0 \) or \( -1 \) based on the intervals. Thus, the condition \( f''(a) \neq 1 \) is satisfied for all \( a \). ### Step 6: Determine the condition for parallel vectors The vectors \( a \hat{i} - b^2 \hat{j} \) and \( \hat{i} + 3b \hat{j} \) are parallel if: \[ \frac{a}{1} = \frac{-b^2}{3b} \] This simplifies to: \[ a = -\frac{b^2}{3} \] ### Step 7: Find the range of \( b \) Given \( a \) must be in the range \( -2 < a < 1 \): \[ -2 < -\frac{b^2}{3} < 1 \] This leads to: \[ 6 > b^2 > -3 \quad \Rightarrow \quad b^2 < 6 \quad \Rightarrow \quad -\sqrt{6} < b < \sqrt{6} \] ### Step 8: Count integral values of \( b \) The integral values of \( b \) in the range \( -\sqrt{6} < b < \sqrt{6} \) are: \[ -2, -1, 0, 1, 2 \] Thus, there are **5 integral values** for \( b \). ### Final Answer The number of integral values of \( b \) can be **5**. ---
Promotional Banner

Topper's Solved these Questions

  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|6 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise SINGLE OPTION CORRECT TYPE QUESTIONS|9 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|4 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|27 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=int_(0)^(x)(|t-1|-|t+2|+t-2)dt , such that f''(a)ne1 . If vectors a hati-b^(2)hatj and hati+3bhatj are parallel for at least one a , then the maximum value of (1-8b-b^(2)) is:

Let f(x) = int_(-2)^(x)|t + 1|dt , then

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in