Home
Class 12
MATHS
Statement I If alpha(1),alpha(2), alpha(...

Statement I If `alpha_(1),alpha_(2), alpha_(3),…., alpha_(n)` are the n real roots of a polynomial equation of nth degree with real coefficients such that sum of the roots taken `r(1lerlen)` at a time is positive, then all the roots are positive.
Statement II The number of times sign of coefficients change while going left to right of a polynomial equation is the number of maximum positive roots.

A

Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I.

B

Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I

C

Statement I is true, Statement II is false

D

Statement I is false, Statement II is true

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|8 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise EXERCISE : 5|1 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|4 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|27 Videos

Similar Questions

Explore conceptually related problems

Write the equation off lowest degree with real coefficients if two of its roots are -1 annd 1+i.

If alpha_(0),alpha_(1),alpha_(2),...,alpha_(n-1) are the n, nth roots of the unity , then find the value of sum_(i=0)^(n-1)(alpha_(i))/(2-a_(i)).

Form an equation with real coefficients one of whose roots is (1)/(-2+i)

If nge3and1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are the n,nth roots of unity, then find value of (sumsum)_("1"le"i" lt "j" le "n" - "1" ) alpha _ "i" alpha _ "j"

If nge3and1,alpha_(1),alpha_(2),.......,alpha_(n-1) are nth roots of unity then the sum sum_(1leiltjlen-1)alpha_(i)alpha(j)=

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If 1,alpha,alpha^(2),.......,alpha^(n-1) are the n^(th) roots of unity, then sum_(i=1)^(n-1)(1)/(2-alpha^(i)) is equal to:

If alpha, beta (alpha lt beta) are the roots of the equation 6x^(2) + 11x + 3 = 0 , then which of the following are real ?

If alpha,beta(alpha lt beta) are the real roots of equation x^2-(k+4)x+k^2-12=0 such theta 4 in (alpha,beta) , then the number of integral value of k is equal to

Let alpha and beta be two real roots of the equation 5cot^2x-3cotx-1=0 , then cot^2 (alpha+beta) =