Home
Class 12
MATHS
Let a(n)=int(0)^(pi//2)(1-sint )^(n) sin...

Let `a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t,`
then `lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n)`is equal to

A

`1//2`

B

`1`

C

`4//3`

D

`3//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{a_k}{k} \] where \[ a_n = \int_{0}^{\frac{\pi}{2}} (1 - \sin t)^n \sin 2t \, dt. \] ### Step 1: Evaluate \( a_n \) We start by rewriting \( a_n \): \[ a_n = \int_{0}^{\frac{\pi}{2}} (1 - \sin t)^n \sin 2t \, dt. \] Using the substitution \( u = 1 - \sin t \), we have: \[ \sin t = 1 - u \quad \text{and} \quad dt = -\frac{du}{\cos t} = -\frac{du}{\sqrt{1 - (1-u)^2}} = -\frac{du}{\sqrt{u(2-u)}}. \] The limits change as follows: - When \( t = 0 \), \( u = 1 \). - When \( t = \frac{\pi}{2} \), \( u = 0 \). Thus, we can rewrite the integral: \[ a_n = \int_{1}^{0} u^n \cdot 2(1-u) \left(-\frac{du}{\sqrt{u(2-u)}}\right). \] Reversing the limits gives: \[ a_n = 2 \int_{0}^{1} u^n (1-u) \, du. \] ### Step 2: Calculate the integral The integral \( \int_{0}^{1} u^n (1-u) \, du \) can be computed using the Beta function: \[ \int_{0}^{1} u^n (1-u) \, du = B(n+1, 2) = \frac{(n)! (1)!}{(n+1)!} = \frac{1}{n+1}. \] Thus, \[ a_n = 2 \cdot \frac{1}{n+1} = \frac{2}{n+1}. \] ### Step 3: Substitute \( a_n \) back into the limit Now we substitute \( a_n \) back into the limit: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{a_k}{k} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{2}{(k)(k+1)}. \] ### Step 4: Simplify the summation We can simplify \( \frac{2}{k(k+1)} \) using partial fractions: \[ \frac{2}{k(k+1)} = 2 \left(\frac{1}{k} - \frac{1}{k+1}\right). \] Thus, the sum becomes: \[ \sum_{k=1}^{n} \left(2 \left(\frac{1}{k} - \frac{1}{k+1}\right)\right) = 2 \left(1 - \frac{1}{n+1}\right) = 2 - \frac{2}{n+1}. \] ### Step 5: Take the limit Now, we take the limit as \( n \to \infty \): \[ \lim_{n \to \infty} \left(2 - \frac{2}{n+1}\right) = 2 - 0 = 2. \] ### Final Answer Thus, the final answer is: \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

Let: a_n=int_0^(pi/2)(1-sint)^nsin2tdt Then find the value of lim_(n->oo)na_n

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

lim_(n->oo)2^(n-1)sin(a/2^n)

If sum_(r=1)^(n) a_(r)=(1)/(6)n(n+1)(n+2) for all nge1 , then lim_(ntooo) sum_(r=1)^(n) (1)/(a_(r)) , is

Let A be nxxn matrix given by A=[(a_(11),a_(12),a_(13)……a_(1n)),(a_(21),a_(22),a_(23)…a_(2n)),(vdots, vdots, vdots),(a_(n1),a_(n2),a_(n3).a_("nn"))] Such that each horizontal row is arithmetic progression and each vertical column is a geometrical progression. It is known that each column in geometric progression have the same common ratio. Given that a_(24)=1,a_(42)=1/8 and a_(43)=3/16 The value of lim_(nto oo)sum_(i=1)^(n)a_(ii) is equal to

lim_(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1 , is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let a(n)=int(0)^(pi//2)(1-sint )^(n) sin 2t, then lim(n to oo)sum(n...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |