Home
Class 12
MATHS
int(0)^(pi//4) cos^(2) x dx...

`int_(0)^(pi//4) cos^(2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{\frac{\pi}{4}} \cos^2 x \, dx \), we will use a trigonometric identity and then perform the integration step by step. ### Step 1: Use the trigonometric identity We know that: \[ \cos 2x = 2 \cos^2 x - 1 \] From this, we can express \(\cos^2 x\) as: \[ \cos^2 x = \frac{1 + \cos 2x}{2} \] ### Step 2: Substitute in the integral Now we substitute this expression into the integral: \[ I = \int_{0}^{\frac{\pi}{4}} \cos^2 x \, dx = \int_{0}^{\frac{\pi}{4}} \frac{1 + \cos 2x}{2} \, dx \] This simplifies to: \[ I = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (1 + \cos 2x) \, dx \] ### Step 3: Split the integral We can split the integral into two parts: \[ I = \frac{1}{2} \left( \int_{0}^{\frac{\pi}{4}} 1 \, dx + \int_{0}^{\frac{\pi}{4}} \cos 2x \, dx \right) \] ### Step 4: Evaluate the first integral The first integral is straightforward: \[ \int_{0}^{\frac{\pi}{4}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{4}} = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] ### Step 5: Evaluate the second integral For the second integral, we have: \[ \int_{0}^{\frac{\pi}{4}} \cos 2x \, dx \] The integral of \(\cos 2x\) is: \[ \int \cos 2x \, dx = \frac{\sin 2x}{2} \] Thus, \[ \int_{0}^{\frac{\pi}{4}} \cos 2x \, dx = \left[ \frac{\sin 2x}{2} \right]_{0}^{\frac{\pi}{4}} = \frac{\sin(\frac{\pi}{2})}{2} - \frac{\sin(0)}{2} = \frac{1}{2} - 0 = \frac{1}{2} \] ### Step 6: Combine the results Now, substituting back into our expression for \(I\): \[ I = \frac{1}{2} \left( \frac{\pi}{4} + \frac{1}{2} \right) = \frac{1}{2} \left( \frac{\pi}{4} + \frac{2}{4} \right) = \frac{1}{2} \cdot \frac{\pi + 2}{4} = \frac{\pi + 2}{8} \] ### Final Result Thus, the value of the integral is: \[ I = \frac{\pi + 2}{8} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2) cos^(2) x dx

Evaluate the following : int_(0)^(pi//2) cos^(2) " x dx"

Evaluate int _(0)^(pi/4) cos x dx

Evaluate: int_(0)^(pi//2) cos2x dx

int_(0)^(pi/2) (cos^(2)x dx)/(cos^(2)x+4 sin^(2)x)

Prove that : int_(0)^(pi) x cos^(2) x dx =(pi^(2))/(4)

int_(0)^(pi//2) x^(2) cos x dx

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

int_(0)^(pi//2) cos 3x dx

int_(0)^(pi/2) cos 2x dx