Home
Class 12
MATHS
The value of x gt 1 satisfying the equat...

The value of `x gt 1` satisfying the equation
`int_(1)^(x) tlnt dt=(1)/(4)` is

A

`sqrte`

B

e

C

`e^(2)`

D

`e-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \int_{1}^{x} t \ln t \, dt = \frac{1}{4} \] for \( x > 1 \), we will use integration by parts. ### Step 1: Set up integration by parts Let: - \( u = \ln t \) ⇒ \( du = \frac{1}{t} dt \) - \( dv = t dt \) ⇒ \( v = \frac{t^2}{2} \) Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we can express our integral as: \[ \int t \ln t \, dt = \left( \ln t \cdot \frac{t^2}{2} \right) - \int \frac{t^2}{2} \cdot \frac{1}{t} \, dt \] ### Step 2: Simplify the integral Now, simplifying the second integral: \[ \int \frac{t^2}{2} \cdot \frac{1}{t} \, dt = \int \frac{t}{2} \, dt = \frac{1}{2} \cdot \frac{t^2}{2} = \frac{t^2}{4} \] Thus, we have: \[ \int t \ln t \, dt = \frac{t^2}{2} \ln t - \frac{t^2}{4} \] ### Step 3: Evaluate the definite integral Now we evaluate the definite integral from 1 to \( x \): \[ \int_{1}^{x} t \ln t \, dt = \left[ \frac{t^2}{2} \ln t - \frac{t^2}{4} \right]_{1}^{x} \] Calculating this gives: \[ = \left( \frac{x^2}{2} \ln x - \frac{x^2}{4} \right) - \left( \frac{1^2}{2} \ln 1 - \frac{1^2}{4} \right) \] Since \( \ln 1 = 0 \): \[ = \frac{x^2}{2} \ln x - \frac{x^2}{4} + \frac{1}{4} \] ### Step 4: Set the equation equal to \(\frac{1}{4}\) Setting this equal to \(\frac{1}{4}\): \[ \frac{x^2}{2} \ln x - \frac{x^2}{4} + \frac{1}{4} = \frac{1}{4} \] Subtracting \(\frac{1}{4}\) from both sides: \[ \frac{x^2}{2} \ln x - \frac{x^2}{4} = 0 \] ### Step 5: Factor out common terms Factoring out \(\frac{x^2}{2}\): \[ \frac{x^2}{2} \left( \ln x - \frac{1}{2} \right) = 0 \] This gives us two cases: 1. \( \frac{x^2}{2} = 0 \) (not possible since \( x > 1 \)) 2. \( \ln x - \frac{1}{2} = 0 \) ### Step 6: Solve for \( x \) From the second case: \[ \ln x = \frac{1}{2} \implies x = e^{\frac{1}{2}} = \sqrt{e} \] Thus, the value of \( x \) satisfying the equation is: \[ \boxed{\sqrt{e}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Number of values of x satisfying the equation int_(-1)^x (8t^2+28/3t+4) \ dt=((3/2)x+1)/(log_(x+1)sqrt(x+1)), is

If f(x)=int_1^x(lnt)/(1+t)dt where x>0, then the values of of x satisfying the equation f(x)+f(1/x)=2 is

The set of value of x, satisfying the equation tan^(2)(sin^(-1)x) gt 1 is :

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

if x in N , then the value of x satisfying the equation 5^x*(8^(x-1))^(1/x)=500 is divisible by

The largest integral value of x satisfying the inequality (tan^(-1)(x))^(2)-4(tan^(-1)(x))+3gt0 is :

What is the positive value of x that satisfies the equation: (6)/(x+1)=(3)/(x-1)=1?

The smallest value of x satisfying the inequality ""^(10)C_(x-1)gt2.""^(10)C_(x) is.

The set of real values of x satisfying the inequality log_(x+1/x)(log_2((x-1)/(x+2))) gt 0, is equal to

Let f be a differentiable function on R and satisfying the integral equation x int_(0)^(x)f(t)dt-int_(0)^(x)tf(x-t)dt=e^(x)-1 AA x in R . Then f(1) equals to ___

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The value of x gt 1 satisfying the equation int(1)^(x) tlnt dt=(1)/(...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |