Home
Class 12
MATHS
If lim(a rarr infty) (1)/(a)int(0)^(inf...

If ` lim_(a rarr infty) (1)/(a)int_(0)^(infty)(x^(2)+ax+1)/(1+x^(4)). "tan"^(-1)((1)/(x))dx ` is
equal to `(pi^(2))/(K),` where K in N, then K equals to

A

4

B

8

C

16

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{a \to \infty} \frac{1}{a} \int_{0}^{\infty} \frac{x^2 + ax + 1}{1 + x^4} \tan^{-1}\left(\frac{1}{x}\right) dx \] and find the value of \( K \) such that this limit equals \( \frac{\pi^2}{K} \). ### Step 1: Set up the integral Let: \[ I = \int_{0}^{\infty} \frac{x^2 + ax + 1}{1 + x^4} \tan^{-1}\left(\frac{1}{x}\right) dx \] We need to evaluate: \[ \lim_{a \to \infty} \frac{I}{a} \] ### Step 2: Use substitution We perform the substitution \( x = \frac{1}{t} \), which gives \( dx = -\frac{1}{t^2} dt \). The limits change as follows: when \( x \to 0 \), \( t \to \infty \) and when \( x \to \infty \), \( t \to 0 \). Thus, we have: \[ I = \int_{\infty}^{0} \frac{\left(\frac{1}{t^2} + \frac{a}{t} + 1\right)}{1 + \frac{1}{t^4}} \tan^{-1}(t) \left(-\frac{1}{t^2}\right) dt \] Rearranging gives: \[ I = \int_{0}^{\infty} \frac{1 + at + t^2}{t^2(1 + \frac{1}{t^4})} \tan^{-1}(t) \frac{1}{t^2} dt \] This simplifies to: \[ I = \int_{0}^{\infty} \frac{1 + at + t^2}{1 + t^4} \tan^{-1}(t) dt \] ### Step 3: Combine integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\infty} \frac{x^2 + ax + 1}{1 + x^4} \tan^{-1}\left(\frac{1}{x}\right) dx \) 2. \( I = \int_{0}^{\infty} \frac{1 + at + t^2}{1 + t^4} \tan^{-1}(t) dt \) Adding these gives: \[ 2I = \int_{0}^{\infty} \frac{(1 + ax + x^2)(\tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right))}{1 + x^4} dx \] Using the identity \( \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) = \frac{\pi}{2} \): \[ 2I = \frac{\pi}{2} \int_{0}^{\infty} \frac{1 + ax + x^2}{1 + x^4} dx \] ### Step 4: Evaluate the integral Now we need to evaluate: \[ \int_{0}^{\infty} \frac{1 + ax + x^2}{1 + x^4} dx \] This integral can be split into three parts: \[ \int_{0}^{\infty} \frac{1}{1 + x^4} dx + a \int_{0}^{\infty} \frac{x}{1 + x^4} dx + \int_{0}^{\infty} \frac{x^2}{1 + x^4} dx \] Using known results: - \( \int_{0}^{\infty} \frac{1}{1 + x^4} dx = \frac{\pi}{2\sqrt{2}} \) - \( \int_{0}^{\infty} \frac{x}{1 + x^4} dx = \frac{1}{2} \int_{0}^{\infty} \frac{1}{1 + u^2} du = \frac{\pi}{4} \) - \( \int_{0}^{\infty} \frac{x^2}{1 + x^4} dx = \frac{\pi}{4\sqrt{2}} \) ### Step 5: Combine results Thus, \[ \int_{0}^{\infty} \frac{1 + ax + x^2}{1 + x^4} dx = \frac{\pi}{2\sqrt{2}} + a \cdot \frac{\pi}{4} + \frac{\pi}{4\sqrt{2}} \] ### Step 6: Substitute back into \( I \) Substituting back into \( 2I \): \[ 2I = \frac{\pi}{2} \left( \frac{\pi}{2\sqrt{2}} + a \cdot \frac{\pi}{4} + \frac{\pi}{4\sqrt{2}} \right) \] ### Step 7: Find limit as \( a \to \infty \) Now we find: \[ \lim_{a \to \infty} \frac{I}{a} = \lim_{a \to \infty} \frac{\frac{\pi^2}{4} a}{a} = \frac{\pi^2}{4} \] ### Step 8: Solve for \( K \) We have: \[ \lim_{a \to \infty} \frac{I}{a} = \frac{\pi^2}{K} \implies K = 4 \] Thus, the final answer is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let lim_(T rarr infty) (1)/(T) int_(0)^(T) ( sin x + sin ax)^(2) dx =L , then

sum _(k=1)^(n) tan^(-1). 1/(1+k+k^(2)) is equal to

int_(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

Show that lim_(nrarr infty) sum_(k=0)^(n)(""^(n)Ck)/(n^k(k+3))=e-2

lim_(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

The value of lim_(a rarr oo)(1)/(a^(2))int_(0)^(a)ln(1+e^(x))dx equals

int(dx)/(ax^(2)+bx+c)=k_(1)tan^(-1)(x+A)/(B)+C if

Evaluate int _(0)^(infty) (tan^(-1)ax-tan^(-1)x)/(x)dx , where a is a parameter.

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int_(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If lim(a rarr infty) (1)/(a)int(0)^(infty)(x^(2)+ax+1)/(1+x^(4)). "ta...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |