Home
Class 12
MATHS
Evaluate (i) int(0)^(pi//2)(d x)/(1+...

Evaluate
(i) `int_(0)^(pi//2)(d x)/(1+sqrt(tan x))`
(ii) `int_(0)^(pi//2) log (tan x ) d x`
(iii) `int_(0)^(pi//4) log (1+tan x ) d x`
(iv) `int_(0)^(pi//2)(sin x- cos x)/(1+ sin x cos x)d x`

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate the given integrals step by step. ### Part (i): Evaluate \( I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{\tan x}} \) 1. **Using the property of definite integrals:** \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{\tan x}} = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{\cot x}} \] This is because \( \tan\left(\frac{\pi}{2} - x\right) = \cot x \). 2. **Setting up the equation:** \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{\tan x}} + \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{\cot x}} \] Let \( J = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{\cot x}} \). 3. **Adding the two integrals:** \[ I + J = \int_{0}^{\frac{\pi}{2}} \left( \frac{1}{1 + \sqrt{\tan x}} + \frac{1}{1 + \sqrt{\cot x}} \right) dx \] 4. **Simplifying the integrand:** \[ \frac{1}{1 + \sqrt{\tan x}} + \frac{1}{1 + \sqrt{\cot x}} = \frac{(1 + \sqrt{\cot x}) + (1 + \sqrt{\tan x})}{(1 + \sqrt{\tan x})(1 + \sqrt{\cot x})} \] The numerator simplifies to \( 2 + \sqrt{\tan x} + \sqrt{\cot x} \). 5. **Using the identity \( \sqrt{\tan x} + \sqrt{\cot x} = 2 \):** \[ I + J = \int_{0}^{\frac{\pi}{2}} dx = \frac{\pi}{2} \] 6. **Since \( I = J \):** \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4} \] ### Part (ii): Evaluate \( I = \int_{0}^{\frac{\pi}{2}} \log(\tan x) \, dx \) 1. **Using the property of definite integrals:** \[ I = \int_{0}^{\frac{\pi}{2}} \log(\tan x) \, dx = \int_{0}^{\frac{\pi}{2}} \log(\cot x) \, dx \] 2. **Adding the two integrals:** \[ I + I = \int_{0}^{\frac{\pi}{2}} \left( \log(\tan x) + \log(\cot x) \right) dx = \int_{0}^{\frac{\pi}{2}} \log(1) \, dx = 0 \] 3. **Thus, we have:** \[ 2I = 0 \implies I = 0 \] ### Part (iii): Evaluate \( I = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) \, dx \) 1. **Using the property of definite integrals:** \[ I = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) \, dx \] 2. **Using the substitution \( x = \frac{\pi}{4} - t \):** \[ I = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan\left(\frac{\pi}{4} - t\right)) \, dt \] Since \( \tan\left(\frac{\pi}{4} - t\right) = \frac{1 - \tan t}{1 + \tan t} \). 3. **Adding the two integrals:** \[ 2I = \int_{0}^{\frac{\pi}{4}} \left( \log(1 + \tan x) + \log(1 + \frac{1 - \tan x}{1 + \tan x}) \right) dx \] 4. **Simplifying the integrand:** \[ 2I = \int_{0}^{\frac{\pi}{4}} \log\left(1 + \tan x + 1 - \tan x\right) \, dx = \int_{0}^{\frac{\pi}{4}} \log(2) \, dx \] 5. **Evaluating the integral:** \[ 2I = \log(2) \cdot \frac{\pi}{4} \implies I = \frac{\pi}{8} \log(2) \] ### Part (iv): Evaluate \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx \) 1. **Using the property of definite integrals:** \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx \] 2. **Using the substitution \( x = \frac{\pi}{2} - t \):** \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos t - \sin t}{1 + \cos t \sin t} \, dt \] 3. **Adding the two integrals:** \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin x - \cos x) + (\cos x - \sin x)}{1 + \sin x \cos x} \, dx = 0 \] 4. **Thus, we have:** \[ 2I = 0 \implies I = 0 \] ### Summary of Results: 1. \( \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{\tan x}} = \frac{\pi}{4} \) 2. \( \int_{0}^{\frac{\pi}{2}} \log(\tan x) \, dx = 0 \) 3. \( \int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) \, dx = \frac{\pi}{8} \log(2) \) 4. \( \int_{0}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx = 0 \)
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

Evaluate int_(0)^(pi//2) (cos^2 x)/(1+sin x cos x)dx .

int_(0)^(pi//2) log | tan x | dx is equal to

int_0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x)cos^2x)dx

Evaluate : int_(0)^(pi//2) (cos x)/(1+sin^(2) x)dx

(i) int_(0)^(pi//2) x sin x cos x dx (ii) int_(0)^(pi//6) (2+3x^(2)) cos 3x dx

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

int_(0)^(pi//2) sin 2x log tan x dx is equal to

Evaluate : int_(0)^(pi//4) tan ^(2) x dx

Show that (i) int_(0)^(pi//2)f(sinx) d x=int_(0)^(pi//2)f(cos x) d x (ii) int_(0)^(pi//2)f(tan x) d x=int_(0)^(pi//2)f(cot x) d x (iii) int_(0)^(pi//2)f(sin 2 x) sin xd x = int_(o)^(pi//2)f(sin 2x).cosx d x

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate (i) int(0)^(pi//2)(d x)/(1+sqrt(tan x)) (ii) int(0)^(p...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |