Home
Class 12
MATHS
Given fuction,{(x^(2), "for" 0 le x lt1)...

Given fuction,`{(x^(2), "for" 0 le x lt1),(sqrtx, "for" 1le x le 2):}`
Evaluate `int_(0)^(2) f(x) d x `.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{2} f(x) \, dx \) for the given piecewise function: \[ f(x) = \begin{cases} x^2 & \text{for } 0 \leq x < 1 \\ \sqrt{x} & \text{for } 1 \leq x \leq 2 \end{cases} \] we will break the integral into two parts according to the definition of the function. ### Step 1: Break the integral into two parts We can express the integral from 0 to 2 as the sum of two integrals: \[ \int_{0}^{2} f(x) \, dx = \int_{0}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx \] ### Step 2: Substitute the function in the integrals Now, we substitute the function \( f(x) \) in each integral: \[ \int_{0}^{1} f(x) \, dx = \int_{0}^{1} x^2 \, dx \] \[ \int_{1}^{2} f(x) \, dx = \int_{1}^{2} \sqrt{x} \, dx \] ### Step 3: Evaluate the first integral Now, we evaluate the first integral: \[ \int_{0}^{1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} \] ### Step 4: Evaluate the second integral Next, we evaluate the second integral: \[ \int_{1}^{2} \sqrt{x} \, dx = \int_{1}^{2} x^{1/2} \, dx = \left[ \frac{x^{3/2}}{3/2} \right]_{1}^{2} = \left[ \frac{2}{3} x^{3/2} \right]_{1}^{2} \] Calculating the limits: \[ = \frac{2}{3} \left( 2^{3/2} - 1^{3/2} \right) = \frac{2}{3} \left( 2\sqrt{2} - 1 \right) \] ### Step 5: Combine the results Now we combine the results from both integrals: \[ \int_{0}^{2} f(x) \, dx = \frac{1}{3} + \frac{2}{3} \left( 2\sqrt{2} - 1 \right) \] ### Step 6: Simplify the expression Now, we simplify the expression: \[ = \frac{1}{3} + \frac{2}{3} \cdot 2\sqrt{2} - \frac{2}{3} \] \[ = \frac{1 - 2}{3} + \frac{4\sqrt{2}}{3} = \frac{-1 + 4\sqrt{2}}{3} \] ### Final Answer Thus, the final result is: \[ \int_{0}^{2} f(x) \, dx = \frac{4\sqrt{2} - 1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

if f(x) = {[3x+4 , 0 le x le 2],[5x , 2 le x le 3]}, then evaluate int_(0)^(3) f(x) dx.

{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = 1

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

"If "f(x) ={underset(x^(2)+1.2 le x le 3)(2x+1.1 le x le 2), then evaluate int_(1)^(3) f(x) dx.

Suppose f:[-2,2] to R is defined by f(x)={{:(-1 " for " -2 le x le 0),(x-1 " for " 0 le x le 2):} , then {x in [-2,2]: x le 0 and f(|x|)=x}=

Let f(x) = {{:(1-x ,"If" 0 le x le 1),(0, "if" 1 lt x le 2),((2-x)^(2),"if"2 lt x le 3):} and function F(x) = int_(0)^(x)f(t) dt . If number of points of discountinuity in [0,3] and non-differentiablity in (0,2) and F(x) are alpha and beta respectively , then (alpha - beta) is equal to .

If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt x le 2,, and g(x) = int_(0)^(x) f(t ) dt","),( x- e,,"," 2lt x le 3 ,, ""):} x in [ 1, 3 ] , then

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Given fuction,{(x^(2), "for" 0 le x lt1),(sqrtx, "for" 1le x le 2):} ...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |