Home
Class 12
MATHS
Evaluate the integral l=int(0)^(2)|1-x| ...

Evaluate the integral `l=int_(0)^(2)|1-x| d x `.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( l = \int_{0}^{2} |1 - x| \, dx \), we will break it down into manageable steps. ### Step 1: Analyze the Absolute Value The expression \( |1 - x| \) can be rewritten based on the value of \( x \): - For \( x < 1 \), \( |1 - x| = 1 - x \) - For \( x \geq 1 \), \( |1 - x| = -(1 - x) = x - 1 \) ### Step 2: Break the Integral into Intervals Since the expression changes at \( x = 1 \), we can split the integral into two parts: \[ l = \int_{0}^{1} (1 - x) \, dx + \int_{1}^{2} (x - 1) \, dx \] ### Step 3: Evaluate the First Integral Now, we evaluate the first integral: \[ \int_{0}^{1} (1 - x) \, dx \] Calculating this integral: \[ = \left[ x - \frac{x^2}{2} \right]_{0}^{1} \] Substituting the limits: \[ = \left( 1 - \frac{1^2}{2} \right) - \left( 0 - 0 \right) = 1 - \frac{1}{2} = \frac{1}{2} \] ### Step 4: Evaluate the Second Integral Next, we evaluate the second integral: \[ \int_{1}^{2} (x - 1) \, dx \] Calculating this integral: \[ = \left[ \frac{x^2}{2} - x \right]_{1}^{2} \] Substituting the limits: \[ = \left( \frac{2^2}{2} - 2 \right) - \left( \frac{1^2}{2} - 1 \right) = \left( 2 - 2 \right) - \left( \frac{1}{2} - 1 \right) = 0 - \left( \frac{1}{2} - 1 \right) = 0 + \frac{1}{2} = \frac{1}{2} \] ### Step 5: Combine the Results Now, we combine the results of both integrals: \[ l = \frac{1}{2} + \frac{1}{2} = 1 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate the integral I=int_(0)^(2)|x-1|dx .

Evaluate the integrals int_0^1x/(x^2+1)dx

Evaluate the integrals int_0^2xsqrt(x+2)

By using the properties of definite integrals, evaluate the integrals int_0^1x(1-x)^n dx

The value of the integral int_(-2)^2|1-x^2|dx is a. 4 b. 2 c. -2 d. 0

Evaluate the integrals int_0^2(dx)/(x+4-x^2)

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dx . Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dxdot Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx

The value of the integral int_(0)^(3) (x^(2)+1)d[x] is, where[*] is the greatest integer function

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate the integral l=int(0)^(2)|1-x| d x .

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |