Home
Class 12
MATHS
Evaluate int(-1)^(1)(x-[x])d x, where [....

Evaluate `int_(-1)^(1)(x-[x])d x`, where `[.]`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{-1}^{1} (x - [x]) \, dx \), where \([x]\) is the greatest integer function (also known as the floor function), we can follow these steps: ### Step 1: Understand the Function The function \( [x] \) gives the greatest integer less than or equal to \( x \). For the interval \([-1, 1]\): - For \( x \in [-1, 0) \), \([x] = -1\) - For \( x \in [0, 1)\), \([x] = 0\) - At \( x = 1\), \([x] = 1\) ### Step 2: Split the Integral We can split the integral into two parts based on the behavior of the floor function: \[ I = \int_{-1}^{0} (x - [x]) \, dx + \int_{0}^{1} (x - [x]) \, dx \] ### Step 3: Evaluate Each Integral #### Integral from -1 to 0 For \( x \in [-1, 0) \): \[ [x] = -1 \implies x - [x] = x - (-1) = x + 1 \] Thus, \[ \int_{-1}^{0} (x - [x]) \, dx = \int_{-1}^{0} (x + 1) \, dx \] Calculating this integral: \[ \int_{-1}^{0} (x + 1) \, dx = \int_{-1}^{0} x \, dx + \int_{-1}^{0} 1 \, dx \] Calculating each part: 1. \(\int_{-1}^{0} x \, dx = \left[ \frac{x^2}{2} \right]_{-1}^{0} = \frac{0^2}{2} - \frac{(-1)^2}{2} = 0 - \frac{1}{2} = -\frac{1}{2}\) 2. \(\int_{-1}^{0} 1 \, dx = [x]_{-1}^{0} = 0 - (-1) = 1\) Combining these: \[ \int_{-1}^{0} (x + 1) \, dx = -\frac{1}{2} + 1 = \frac{1}{2} \] #### Integral from 0 to 1 For \( x \in [0, 1) \): \[ [x] = 0 \implies x - [x] = x - 0 = x \] Thus, \[ \int_{0}^{1} (x - [x]) \, dx = \int_{0}^{1} x \, dx \] Calculating this integral: \[ \int_{0}^{1} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{1} = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2} \] ### Step 4: Combine the Results Now, we combine the results of both integrals: \[ I = \int_{-1}^{0} (x - [x]) \, dx + \int_{0}^{1} (x - [x]) \, dx = \frac{1}{2} + \frac{1}{2} = 1 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(1)(1)/(3+4x)d x

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Evaluate int_(0)^(3)|(x-1)(x-2)|d x .

Evaluate: int(x-1)/((x+1)(x-2))\ dx

Evaluate int_(0)^(1)(ln(1+x))/(1+x)dx

Evaluate: int1/((x-1)(x+1)(x+2))\ dx

Evaluate : int(1-x^(2))/(x(1-x)) dx.

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate int(-1)^(1)(x-[x])d x, where [.]

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |