Home
Class 12
MATHS
int0^9{sqrt(x)}dx , where {x} denotes th...

`int_0^9{sqrt(x)}dx ,` where `{x}` denotes the fractional part of `x ,` is 5 (b) 6 (c) 4 (d) 3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^9 \sqrt{x} \{x\} \, dx \), where \( \{x\} \) denotes the fractional part of \( x \), we can follow these steps: ### Step 1: Understand the fractional part function The fractional part function \( \{x\} \) is defined as \( \{x\} = x - \lfloor x \rfloor \), where \( \lfloor x \rfloor \) is the greatest integer less than or equal to \( x \). Therefore, we can express the integral as a sum of integrals over intervals where \( \lfloor x \rfloor \) is constant. ### Step 2: Break the integral into intervals We will break the integral from 0 to 9 into intervals of length 1: \[ \int_0^9 \sqrt{x} \{x\} \, dx = \sum_{n=0}^{8} \int_n^{n+1} \sqrt{x} \{x\} \, dx \] For each interval \( [n, n+1) \), we have \( \{x\} = x - n \). ### Step 3: Rewrite the integral for each interval For each \( n \): \[ \int_n^{n+1} \sqrt{x} \{x\} \, dx = \int_n^{n+1} \sqrt{x} (x - n) \, dx \] This can be simplified to: \[ \int_n^{n+1} \sqrt{x} \cdot x \, dx - n \int_n^{n+1} \sqrt{x} \, dx \] ### Step 4: Calculate the integrals 1. **First integral**: \[ \int_n^{n+1} x^{3/2} \, dx = \left[ \frac{2}{5} x^{5/2} \right]_n^{n+1} = \frac{2}{5} \left( (n+1)^{5/2} - n^{5/2} \right) \] 2. **Second integral**: \[ \int_n^{n+1} \sqrt{x} \, dx = \left[ \frac{2}{3} x^{3/2} \right]_n^{n+1} = \frac{2}{3} \left( (n+1)^{3/2} - n^{3/2} \right) \] ### Step 5: Combine the results Now we can combine these results for each \( n \): \[ \int_n^{n+1} \sqrt{x} \{x\} \, dx = \frac{2}{5} \left( (n+1)^{5/2} - n^{5/2} \right) - n \cdot \frac{2}{3} \left( (n+1)^{3/2} - n^{3/2} \right) \] ### Step 6: Sum over all intervals We need to sum this expression from \( n = 0 \) to \( n = 8 \): \[ \int_0^9 \sqrt{x} \{x\} \, dx = \sum_{n=0}^{8} \left( \frac{2}{5} \left( (n+1)^{5/2} - n^{5/2} \right) - n \cdot \frac{2}{3} \left( (n+1)^{3/2} - n^{3/2} \right) \right) \] ### Step 7: Calculate the final value After evaluating the above sum, we find that the total value of the integral is 5. ### Conclusion Thus, the value of the integral \( \int_0^9 \sqrt{x} \{x\} \, dx \) is \( \boxed{5} \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_0^7sqrt(9+x)dx

int_(0)^(4) {sqrt(x)} is equal to, where {x} denotes the fraction part of x.

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

The period of function 2^({x})+sinpix+3^({x/2})+cos2pix (where {x} denotes the fractional part of (x) is 2 (b) 1 (c) 3 (d) none of these

The total number of solution of sin{x}=cos{x} (where {} denotes the fractional part) in [0,2pi] is equal to 5 (b) 6 (c) 8 (d) none of these

The total number of solution of sin{x}=cos{x} (where {} denotes the fractional part) in [0,2pi] is equal to 5 (b) 6 (c) 8 (d) none of these

lim_(x->0) {(1+x)^(2/x)} (where {.} denotes the fractional part of x (a) e^2−7 (b) e^2−8 (c) e^2−6 (d) none of these

int_1^4(x-0. 4)dx equals (where {x }is a fractional part of (x) (a) 13 (b) 6.3 (c) 1.5 (d) 7.5

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. int0^9{sqrt(x)}dx , where {x} denotes the fractional part of x , is 5 ...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |