Home
Class 12
MATHS
The value of int(0)^(100)[ tan ^(-1)x] d...

The value of `int_(0)^(100)[ tan ^(-1)x] d x ` is equal to (where `[.]` denotes the greatest integer function)

A

`tan1-100`

B

`pi//2- tan 1`

C

`100-tan 1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{100} \tan^{-1}(x) \, dx \), we will follow these steps: ### Step 1: Understand the function and limits The function \( \tan^{-1}(x) \) is defined for all \( x \) and approaches \( \frac{\pi}{2} \) as \( x \) approaches infinity. We need to evaluate the integral from \( 0 \) to \( 100 \). ### Step 2: Find the antiderivative of \( \tan^{-1}(x) \) The antiderivative of \( \tan^{-1}(x) \) can be found using integration by parts. Let: - \( u = \tan^{-1}(x) \) so that \( du = \frac{1}{1+x^2} \, dx \) - \( dv = dx \) so that \( v = x \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] we have: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \int \frac{x}{1+x^2} \, dx \] ### Step 3: Evaluate the remaining integral The remaining integral \( \int \frac{x}{1+x^2} \, dx \) can be solved by substitution: Let \( w = 1 + x^2 \), then \( dw = 2x \, dx \) or \( \frac{1}{2} dw = x \, dx \). Thus, \[ \int \frac{x}{1+x^2} \, dx = \frac{1}{2} \int \frac{1}{w} \, dw = \frac{1}{2} \ln|w| + C = \frac{1}{2} \ln(1+x^2) + C \] ### Step 4: Combine results Now substituting back, we have: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) + C \] ### Step 5: Evaluate the definite integral Now we evaluate the definite integral from \( 0 \) to \( 100 \): \[ \int_{0}^{100} \tan^{-1}(x) \, dx = \left[ x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) \right]_{0}^{100} \] Calculating at the limits: 1. At \( x = 100 \): \[ 100 \tan^{-1}(100) - \frac{1}{2} \ln(1 + 100^2) = 100 \cdot \frac{\pi}{2} - \frac{1}{2} \ln(10001) \] \[ = 50\pi - \frac{1}{2} \ln(10001) \] 2. At \( x = 0 \): \[ 0 \cdot \tan^{-1}(0) - \frac{1}{2} \ln(1 + 0^2) = 0 - 0 = 0 \] Thus, \[ \int_{0}^{100} \tan^{-1}(x) \, dx = 50\pi - \frac{1}{2} \ln(10001) \] ### Step 6: Apply the greatest integer function Now, we need to find the greatest integer value of \( 50\pi - \frac{1}{2} \ln(10001) \). Using \( \pi \approx 3.14 \): \[ 50\pi \approx 50 \cdot 3.14 = 157 \] And calculating \( \ln(10001) \): \[ \ln(10001) \approx 9.210 \quad \text{(using a calculator)} \] Thus, \[ \frac{1}{2} \ln(10001) \approx \frac{9.210}{2} \approx 4.605 \] So, \[ 50\pi - \frac{1}{2} \ln(10001) \approx 157 - 4.605 \approx 152.395 \] Finally, applying the greatest integer function: \[ \lfloor 152.395 \rfloor = 152 \] ### Final Answer The value of \( \int_{0}^{100} \tan^{-1}(x) \, dx \) is equal to \( \lfloor 50\pi - \frac{1}{2} \ln(10001) \rfloor = 152 \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(infty)[tan^(-1)x] dx is equal to (where ,[.] denotes the greatest integer function)

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

The value of int_-1^10 sgn (x -[x])dx is equal to (where, [:] denotes the greatest integer function

The value of int _(1)^(2)(x^([x^(2)])+[x^(2)]^(x)) d x is equal to where [.] denotes the greatest integer function

The value of int_0^(12pi) ([sint]+[-sint])dt is equal to (where [.] denotes the greatest integer function )

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

The value of the integral I=int_(0)^( pi/4)[sin x+cos x](cos x-sin x)dx is equal to (where,[.] denotes the greatest integer function)

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The value of int(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] den...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |