Home
Class 12
MATHS
The value of int (1)^(2)(x^([x^(2)])+[x^...

The value of `int _(1)^(2)(x^([x^(2)])+[x^(2)]^(x)) d x ` is equal to where `[.]` denotes the greatest integer function

A

`(5)/(4)sqrt3+(2^(sqrt3)-2^(sqrt2)) +(1)/( log 3)(9-3^(sqrt3))`

B

`(5)/(4)+sqrt3+(sqrt2)/(3)+(1)/( log 2) (2^(sqrt3)-2^(sqrt2))+(1)/( log 3)(9-3^(sqrt3))`

C

`(5)/(4)+(sqrt2)/(2)+(1)/(log 2)(2^(sqrt3)-2^(sqrt2))+(1)/(log 3)(9-3^(sqrt3))`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{1}^{2} \left( x^{\lfloor x^2 \rfloor} + \lfloor x^2 \rfloor^x \right) dx \] where \(\lfloor . \rfloor\) denotes the greatest integer function, we will break down the integral into segments based on the value of \(x\). ### Step 1: Determine the ranges for \(\lfloor x^2 \rfloor\) For \(x\) in the interval \([1, 2]\): - When \(1 \leq x < \sqrt{2}\), \(x^2\) is in the interval \([1, 2)\), so \(\lfloor x^2 \rfloor = 1\). - When \(\sqrt{2} \leq x < \sqrt{3}\), \(x^2\) is in the interval \([2, 3)\), so \(\lfloor x^2 \rfloor = 2\). - When \(\sqrt{3} \leq x \leq 2\), \(x^2\) is in the interval \([3, 4]\), so \(\lfloor x^2 \rfloor = 3\). ### Step 2: Break the integral into parts We can now express \(I\) as: \[ I = \int_{1}^{\sqrt{2}} \left( x^{1} + 1^{x} \right) dx + \int_{\sqrt{2}}^{\sqrt{3}} \left( x^{2} + 2^{x} \right) dx + \int_{\sqrt{3}}^{2} \left( x^{3} + 3^{x} \right) dx \] ### Step 3: Evaluate each integral separately 1. **First Integral:** \[ \int_{1}^{\sqrt{2}} \left( x + 1 \right) dx = \int_{1}^{\sqrt{2}} x \, dx + \int_{1}^{\sqrt{2}} 1 \, dx \] Calculating these: \[ \int x \, dx = \frac{x^2}{2} \Big|_{1}^{\sqrt{2}} = \frac{(\sqrt{2})^2}{2} - \frac{1^2}{2} = \frac{2}{2} - \frac{1}{2} = \frac{1}{2} \] \[ \int 1 \, dx = x \Big|_{1}^{\sqrt{2}} = \sqrt{2} - 1 \] Thus, \[ \int_{1}^{\sqrt{2}} \left( x + 1 \right) dx = \frac{1}{2} + (\sqrt{2} - 1) = \sqrt{2} - \frac{1}{2} \] 2. **Second Integral:** \[ \int_{\sqrt{2}}^{\sqrt{3}} \left( x^{2} + 2^{x} \right) dx = \int_{\sqrt{2}}^{\sqrt{3}} x^{2} \, dx + \int_{\sqrt{2}}^{\sqrt{3}} 2^{x} \, dx \] Calculating these: \[ \int x^{2} \, dx = \frac{x^3}{3} \Big|_{\sqrt{2}}^{\sqrt{3}} = \frac{(\sqrt{3})^3}{3} - \frac{(\sqrt{2})^3}{3} = \frac{3\sqrt{3}}{3} - \frac{2\sqrt{2}}{3} = \sqrt{3} - \frac{2\sqrt{2}}{3} \] \[ \int 2^{x} \, dx = \frac{2^{x}}{\ln 2} \Big|_{\sqrt{2}}^{\sqrt{3}} = \frac{2^{\sqrt{3}}}{\ln 2} - \frac{2^{\sqrt{2}}}{\ln 2} \] Thus, \[ \int_{\sqrt{2}}^{\sqrt{3}} \left( x^{2} + 2^{x} \right) dx = \left( \sqrt{3} - \frac{2\sqrt{2}}{3} \right) + \left( \frac{2^{\sqrt{3}} - 2^{\sqrt{2}}}{\ln 2} \right) \] 3. **Third Integral:** \[ \int_{\sqrt{3}}^{2} \left( x^{3} + 3^{x} \right) dx = \int_{\sqrt{3}}^{2} x^{3} \, dx + \int_{\sqrt{3}}^{2} 3^{x} \, dx \] Calculating these: \[ \int x^{3} \, dx = \frac{x^4}{4} \Big|_{\sqrt{3}}^{2} = \frac{(2)^4}{4} - \frac{(\sqrt{3})^4}{4} = \frac{16}{4} - \frac{9}{4} = \frac{7}{4} \] \[ \int 3^{x} \, dx = \frac{3^{x}}{\ln 3} \Big|_{\sqrt{3}}^{2} = \frac{3^{2}}{\ln 3} - \frac{3^{\sqrt{3}}}{\ln 3} = \frac{9 - 3^{\sqrt{3}}}{\ln 3} \] Thus, \[ \int_{\sqrt{3}}^{2} \left( x^{3} + 3^{x} \right) dx = \frac{7}{4} + \frac{9 - 3^{\sqrt{3}}}{\ln 3} \] ### Step 4: Combine all parts Now, we can combine all the parts to find the total value of the integral \(I\): \[ I = \left( \sqrt{2} - \frac{1}{2} \right) + \left( \sqrt{3} - \frac{2\sqrt{2}}{3} + \frac{2^{\sqrt{3}} - 2^{\sqrt{2}}}{\ln 2} \right) + \left( \frac{7}{4} + \frac{9 - 3^{\sqrt{3}}}{\ln 3} \right) \] ### Final Result This gives the final value of the integral \(I\). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

Evaluate int_(4)^(6)([x^(2)])/([x^(2)-20x+100]+[x^(2)])dx where [.] denotes the greatest integer function.

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

The value of int_(0)^(infty)[tan^(-1)x] dx is equal to (where ,[.] denotes the greatest integer function)

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

If f:R in R be such that f(x) =sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos x-1) , then int_(x_(1))^(x_(2)) [cos x-(1)/(2)]dx is equal to, where x1.x2 in D and [.] denotes the greatest integer function,

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The value of int (1)^(2)(x^([x^(2)])+[x^(2)]^(x)) d x is equal to whe...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |