Home
Class 12
MATHS
The value of int(0)^(2pi)[|sin x |+|cos ...

The value of `int_(0)^(2pi)[|sin x |+|cos x |] d x ` is equal to

A

`(pi)/(2)`

B

`pi`

C

`(3pi)/(2)`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2\pi} (|\sin x| + |\cos x|) \, dx \), we can follow these steps: ### Step 1: Analyze the Function The function \( |\sin x| + |\cos x| \) is periodic with a period of \( \pi \). This is because both \( |\sin x| \) and \( |\cos x| \) have a period of \( 2\pi \), but their sum will repeat every \( \pi \). ### Step 2: Determine the Integral Over One Period To find the integral over the interval \( [0, 2\pi] \), we can calculate it over \( [0, \pi] \) and then double the result: \[ \int_{0}^{2\pi} (|\sin x| + |\cos x|) \, dx = 2 \int_{0}^{\pi} (|\sin x| + |\cos x|) \, dx \] ### Step 3: Evaluate the Integral from 0 to π In the interval \( [0, \pi] \): - \( |\sin x| = \sin x \) (since \( \sin x \) is non-negative) - \( |\cos x| = \cos x \) for \( x \in [0, \frac{\pi}{2}] \) and \( |\cos x| = -\cos x \) for \( x \in [\frac{\pi}{2}, \pi] \) Thus, we can split the integral: \[ \int_{0}^{\pi} (|\sin x| + |\cos x|) \, dx = \int_{0}^{\frac{\pi}{2}} (\sin x + \cos x) \, dx + \int_{\frac{\pi}{2}}^{\pi} (\sin x - \cos x) \, dx \] ### Step 4: Calculate Each Integral 1. **First Integral**: \[ \int_{0}^{\frac{\pi}{2}} (\sin x + \cos x) \, dx = \int_{0}^{\frac{\pi}{2}} \sin x \, dx + \int_{0}^{\frac{\pi}{2}} \cos x \, dx \] - \( \int \sin x \, dx = -\cos x \) and \( \int \cos x \, dx = \sin x \) - Evaluating: \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = [-\cos x]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1 \] \[ \int_{0}^{\frac{\pi}{2}} \cos x \, dx = [\sin x]_{0}^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin(0) = 1 - 0 = 1 \] - Thus, the first integral is: \[ \int_{0}^{\frac{\pi}{2}} (\sin x + \cos x) \, dx = 1 + 1 = 2 \] 2. **Second Integral**: \[ \int_{\frac{\pi}{2}}^{\pi} (\sin x - \cos x) \, dx = \int_{\frac{\pi}{2}}^{\pi} \sin x \, dx - \int_{\frac{\pi}{2}}^{\pi} \cos x \, dx \] - Evaluating: \[ \int_{\frac{\pi}{2}}^{\pi} \sin x \, dx = [-\cos x]_{\frac{\pi}{2}}^{\pi} = -\cos(\pi) + \cos\left(\frac{\pi}{2}\right) = 1 + 0 = 1 \] \[ \int_{\frac{\pi}{2}}^{\pi} \cos x \, dx = [\sin x]_{\frac{\pi}{2}}^{\pi} = \sin(\pi) - \sin\left(\frac{\pi}{2}\right) = 0 - 1 = -1 \] - Thus, the second integral is: \[ \int_{\frac{\pi}{2}}^{\pi} (\sin x - \cos x) \, dx = 1 - (-1) = 1 + 1 = 2 \] ### Step 5: Combine the Results Now, we combine the results of the two integrals: \[ \int_{0}^{\pi} (|\sin x| + |\cos x|) \, dx = 2 + 2 = 4 \] ### Step 6: Final Calculation Finally, we multiply by 2 to account for the interval \( [0, 2\pi] \): \[ \int_{0}^{2\pi} (|\sin x| + |\cos x|) \, dx = 2 \times 4 = 8 \] Thus, the value of the integral is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2npi)[sin x cos x] dx is equal to

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int_(0)^(2pi)cos^(5)x dx , is

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

int_(0)^(pi//2) x sin x cos x dx

The value of int_(0)^(pi//2) (x+sin x)/(1+cos x)dx , is

The value of int_(0)^(2pi) cos^(99)x dx , is

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

The value of int_(-pi)^(pi) sin^(3) x cos^(2)x dx is

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The value of int(0)^(2pi)[|sin x |+|cos x |] d x is equal to

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |