Home
Class 12
MATHS
The integral int(pi/4)^(5pi/4)(|cost|sin...

The integral `int_(pi/4)^(5pi/4)(|cost|sint+|sint|cost)` has the value equal to

A

0

B

`1//2`

C

`1//sqrt2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (|\cos t| \sin t + |\sin t| \cos t) \, dt \), we will break it down step by step. ### Step 1: Split the Integral We can split the integral into two parts: \[ I = \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} |\cos t| \sin t \, dt + \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} |\sin t| \cos t \, dt \] ### Step 2: Determine the Sign of \( \cos t \) and \( \sin t \) Next, we need to determine the intervals where \( \cos t \) and \( \sin t \) are positive or negative in the interval \( \left[\frac{\pi}{4}, \frac{5\pi}{4}\right] \): - In the interval \( \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \): - \( \cos t \) is positive - \( \sin t \) is positive - In the interval \( \left[\frac{\pi}{2}, \frac{5\pi}{4}\right] \): - \( \cos t \) is negative - \( \sin t \) is positive in \( \left[\frac{\pi}{2}, \frac{3\pi}{4}\right] \) and negative in \( \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right] \) ### Step 3: Rewrite the Integral with Absolute Values Now we rewrite the integral considering the signs: \[ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos t \sin t \, dt + \int_{\frac{\pi}{2}^{\frac{5\pi}{4}} -\cos t \sin t \, dt + \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin t \cos t \, dt - \int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} \sin t (-\cos t) \, dt \] ### Step 4: Combine the Integrals This gives us: \[ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos t \sin t \, dt + \int_{\frac{\pi}{2}}^{\frac{5\pi}{4}} -\cos t \sin t \, dt + \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin t \cos t \, dt + \int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} \sin t \cos t \, dt \] ### Step 5: Use the Identity for Sine Using the identity \( 2 \sin t \cos t = \sin(2t) \), we can simplify our integrals: \[ I = \frac{1}{2} \left( \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin(2t) \, dt - \int_{\frac{\pi}{2}}^{\frac{5\pi}{4}} \sin(2t) \, dt + \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin(2t) \, dt + \int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} \sin(2t) \, dt \right) \] ### Step 6: Evaluate Each Integral Now we evaluate each integral: 1. \( \int \sin(2t) \, dt = -\frac{1}{2} \cos(2t) \) 2. Calculate the limits for each integral: - For \( \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin(2t) \, dt \) - For \( \int_{\frac{\pi}{2}}^{\frac{5\pi}{4}} \sin(2t) \, dt \) - For \( \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin(2t) \, dt \) - For \( \int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} \sin(2t) \, dt \) ### Step 7: Combine Results After evaluating each integral and substituting the limits, we will find that all contributions will cancel out, leading to: \[ I = 0 \] ### Final Result Thus, the value of the integral is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The Integral int_(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to:

The integral int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x)) equals

The Integral int_(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to: (2) (3) (4)

If the value of the integral I=int_((pi)/(4))^((pi)/(3))" max "(sinx, tanx)dx is equal to ln k, then the value of k^(2) is equal to

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

The value of the definite integral int _(-(pi//2))^(pi//2)(cos ^(2) x )/(1+ 5 ^(x)) equal to:

The value of the integral int_(-pi//4)^(pi//4) sin^(-4)x dx , is

The value of the definite integral int_(t+2pi)^(t+5pi//2) {sin^(-1)(cosx)+cos^(-1)(cosx)} dx is equal to

int_(pi //4)^(3pi//4) (dx)/( 1+ cosx) is equal to

Evaluate the definite integrals int_(pi/6)^(pi/4) cose cxdx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The integral int(pi/4)^(5pi/4)(|cost|sint+|sint|cost) has the value eq...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |