Home
Class 12
MATHS
Let f(x)=|(cos x,e^(x^2) , 2x cos^2x/2),...

Let `f(x)=|(cos x,e^(x^2) , 2x cos^2x/2),(x^2, sec x, sinx+x^3),(1,2,x+tan x)|` then the value of `int_(-pi/2)^(pi/2)(x^2+1)(f(x)+f''(x))dx `

A

(a)1

B

(b)`-1`

C

(c)2

D

(d)None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 + 1)(f(x) + f''(x)) \, dx, \] where \[ f(x) = \begin{pmatrix} \cos x & e^{x^2} & \frac{2x \cos^2 \frac{x}{2}}{x^2} \\ x^2 & \sec x & \sin x + x^3 \\ 1 & 2 & x + \tan x \end{pmatrix}, \] we will analyze the properties of the function \( f(x) \) and its derivatives. ### Step 1: Determine \( f(-x) \) First, we compute \( f(-x) \): \[ f(-x) = \begin{pmatrix} \cos(-x) & e^{(-x)^2} & \frac{2(-x) \cos^2 \frac{-x}{2}}{(-x)^2} \\ (-x)^2 & \sec(-x) & \sin(-x) + (-x)^3 \\ 1 & 2 & -x + \tan(-x) \end{pmatrix}. \] Using the properties of trigonometric and exponential functions, we have: - \( \cos(-x) = \cos x \) - \( e^{(-x)^2} = e^{x^2} \) - \( \sec(-x) = \sec x \) - \( \sin(-x) = -\sin x \) - \( \tan(-x) = -\tan x \) Thus, we can simplify: \[ f(-x) = \begin{pmatrix} \cos x & e^{x^2} & -\frac{2x \cos^2 \frac{x}{2}}{x^2} \\ x^2 & \sec x & -\sin x - x^3 \\ 1 & 2 & -x - \tan x \end{pmatrix}. \] ### Step 2: Determine \( f''(x) \) Next, we find \( f''(x) \). The second derivative \( f''(x) \) will have similar properties, and we can analyze it in a similar manner as \( f(x) \). ### Step 3: Analyze \( f(x) + f''(x) \) Now, we want to analyze the expression \( f(x) + f''(x) \) under the integral. ### Step 4: Check symmetry We check if \( f(-x) + f''(-x) \) has any symmetry: \[ g(x) = (x^2 + 1)(f(x) + f''(x)). \] Now, we compute \( g(-x) \): \[ g(-x) = ((-x)^2 + 1)(f(-x) + f''(-x)) = (x^2 + 1)(f(-x) + f''(-x)). \] Using the properties of \( f(-x) \) and \( f''(-x) \), we find that: \[ g(-x) = (x^2 + 1)(-f(x) - f''(x)). \] ### Step 5: Integral evaluation Now, we can conclude that: \[ g(-x) = -g(x). \] This means that \( g(x) \) is an odd function. The integral of an odd function over a symmetric interval around zero is zero: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} g(x) \, dx = 0. \] Thus, the value of the integral is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

if f(x)=|[x,cosx,e^(x^2)],[sinx,x^2,secx],[tanx,1,2]| then the value of int_((-pi)/2)^(pi/2) f(x)dx is equal to

Determine the value of int_(-pi)^(pi) (2x(1+sinx))/(1+cos^(2)x)dx .

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

Let f(x)= |{:(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x):}| then find the value of f'((pi)/(2)) .

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

Let f(x)=|(2cos^2x,sin2x,-sinx),(sin2x,2sin^2x,cosx),(sinx,-cosx,0)| . Then the value of int_0^(pi//2)[f(x)+f^(prime)(x)]dx is a. pi b. pi//2 c. 2pi d. 3pi//2

f(x)=|(secx,cos x,sec^2x + cot x cosecx),(cos^2x,cos^2x,cosec^2 x),(1,cos^2x,cos^2x)| then int_0^(pi/2) f(x) dx=.....

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let f(x)=|(cos x,e^(x^2) , 2x cos^2x/2),(x^2, sec x, sinx+x^3),(1,2,x+...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |