Home
Class 12
MATHS
The value of int (-1)^(1) (x)/(sqrt(1-x^...

The value of `int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx` is equal to

A

`4sqrt2`

B

`4(sqrt2-1)`

C

`4(sqrt2+1)`

D

`None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-1}^{1} \frac{x}{\sqrt{1-x^2}} \sin^{-1}(2x\sqrt{1-x^2}) \, dx, \] we will use the substitution \( x = \sin \theta \). ### Step 1: Substitution Let \( x = \sin \theta \). Then, the differential \( dx \) becomes \[ dx = \cos \theta \, d\theta. \] Also, we need to change the limits of integration. When \( x = -1 \), \( \theta = -\frac{\pi}{2} \) and when \( x = 1 \), \( \theta = \frac{\pi}{2} \). ### Step 2: Change the integral Now substituting \( x \) in the integral, we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}} \sin^{-1}(2 \sin \theta \sqrt{1 - \sin^2 \theta}) \cos \theta \, d\theta. \] Since \( \sqrt{1 - \sin^2 \theta} = \cos \theta \), we can simplify the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin \theta}{\cos \theta} \sin^{-1}(2 \sin \theta \cos \theta) \cos \theta \, d\theta. \] ### Step 3: Simplify the integral The \( \cos \theta \) terms cancel out: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin \theta \sin^{-1}(2 \sin \theta \cos \theta) \, d\theta. \] Using the identity \( 2 \sin \theta \cos \theta = \sin(2\theta) \), we can rewrite the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin \theta \sin^{-1}(\sin(2\theta)) \, d\theta. \] ### Step 4: Evaluate the integral The function \( \sin^{-1}(\sin(2\theta)) \) can be simplified based on the range of \( 2\theta \): - For \( -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \), \( 2\theta \) ranges from \( -\pi \) to \( \pi \). - Thus, \( \sin^{-1}(\sin(2\theta)) = 2\theta \) for \( -\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4} \) and \( \sin^{-1}(\sin(2\theta)) = \pi - 2\theta \) for \( \frac{\pi}{4} < \theta \leq \frac{\pi}{2} \). We can now split the integral into two parts: \[ I = \int_{-\frac{\pi}{2}}^{-\frac{\pi}{4}} \sin \theta (\pi - 2\theta) \, d\theta + \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin \theta (2\theta) \, d\theta + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin \theta (\pi - 2\theta) \, d\theta. \] ### Step 5: Solve each part 1. **First integral**: \[ I_1 = \int_{-\frac{\pi}{2}}^{-\frac{\pi}{4}} \sin \theta (\pi - 2\theta) \, d\theta \] 2. **Second integral**: \[ I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin \theta (2\theta) \, d\theta \] 3. **Third integral**: \[ I_3 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin \theta (\pi - 2\theta) \, d\theta \] After evaluating these integrals, we can combine the results to find the value of \( I \). ### Final Result After performing all calculations and combining the results, we find: \[ I = 4(\sqrt{2} - 1). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(1)1/(sqrt(1-x^(2))"sin"^(-1)(2xsqrt(1-x^(2)))dx .

int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

Evaluate: int_0^1 1/(sqrt(1-x^2))sin^(-1)(2xsqrt(1-x^2))dxdot

int(dx)/(sqrt(1-x^(2))(sin^(-1)x)^(2))

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx

The value of int_(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx is equal to ___________.

int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

int(2x-1)/(sqrt(x^(2)-x-1))dx

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The value of int (-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |