Home
Class 12
MATHS
Suppose the function gn(x)=x^(2n+1)+an x...

Suppose the function `g_n(x)=x^(2n+1)+a_n x+b_n(N in N)` satisfes the equation `int_-1^1 (px + q)g_n(x)dx=0` for all linear functions `(px+q)` then

A

`a_(n)=b_(n)=0`

B

`b_(n)=0,a_(n)=-(3)/(2n+3)`

C

`a_(n)=0,b_(n)=-(3)/(2n+3)`

D

`a_(n)=(3)/(2n+3),b_(n)=-(3)/(2n+3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given function \( g_n(x) = x^{2n+1} + a_n x + b_n \) and the condition that the integral \[ \int_{-1}^{1} (px + q) g_n(x) \, dx = 0 \] holds for all linear functions \( (px + q) \). ### Step-by-Step Solution: 1. **Set Up the Integral**: We start with the integral: \[ I = \int_{-1}^{1} (px + q) g_n(x) \, dx = \int_{-1}^{1} (px + q) (x^{2n+1} + a_n x + b_n) \, dx \] 2. **Expand the Integral**: Distributing \( (px + q) \) gives: \[ I = \int_{-1}^{1} \left( px \cdot x^{2n+1} + q \cdot x^{2n+1} + p a_n x^2 + q a_n x + p b_n x + q b_n \right) \, dx \] This can be rewritten as: \[ I = p \int_{-1}^{1} x^{2n+2} \, dx + q \int_{-1}^{1} x^{2n+1} \, dx + p a_n \int_{-1}^{1} x^2 \, dx + q a_n \int_{-1}^{1} x \, dx + p b_n \int_{-1}^{1} x \, dx + q b_n \int_{-1}^{1} 1 \, dx \] 3. **Evaluate the Integrals**: - The integral \( \int_{-1}^{1} x^{2n+1} \, dx = 0 \) (since it is an odd function). - The integral \( \int_{-1}^{1} x^{2n+2} \, dx = \frac{2}{2n+3} \). - The integral \( \int_{-1}^{1} x^2 \, dx = \frac{2}{3} \). - The integral \( \int_{-1}^{1} x \, dx = 0 \) (since it is an odd function). - The integral \( \int_{-1}^{1} 1 \, dx = 2 \). Thus, we have: \[ I = p \cdot \frac{2}{2n+3} + 0 + p a_n \cdot \frac{2}{3} + 0 + 0 + q b_n \cdot 2 \] Simplifying gives: \[ I = \frac{2p}{2n+3} + \frac{2p a_n}{3} + 2q b_n \] 4. **Set the Integral to Zero**: Since \( I = 0 \) for all \( p \) and \( q \), we can separate the coefficients of \( p \) and \( q \): \[ \frac{2}{2n+3} + \frac{2a_n}{3} = 0 \quad \text{(coefficient of } p\text{)} \] \[ 2b_n = 0 \quad \text{(coefficient of } q\text{)} \] 5. **Solve for \( b_n \)**: From \( 2b_n = 0 \): \[ b_n = 0 \] 6. **Solve for \( a_n \)**: From \( \frac{2}{2n+3} + \frac{2a_n}{3} = 0 \): \[ \frac{2a_n}{3} = -\frac{2}{2n+3} \] Multiplying both sides by \( 3 \): \[ 2a_n = -\frac{6}{2n+3} \] Thus: \[ a_n = -\frac{3}{2n+3} \] ### Conclusion: The values we have found are: - \( b_n = 0 \) - \( a_n = -\frac{3}{2n+3} \) Thus, the correct option is the one that states \( b_n = 0 \) and \( a_n = -\frac{3}{2n+3} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

int (2x^(n-1))/(x^n+3) dx

If n is a positive integer then int_(0)^(1)(ln x)^(n)dx is :

The function y= f(x) = lim_(n to oo) (x^(2n)-1)/(x^(2n)+1) . Is this function same as the function g(x) = "sgn"(|x|)-1) .

If n in N , then int_(-n)^(n)(-1)^([x]) dx equals

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

If n in N , then int_(0)^(n) (x-[x])dx is equal to

Q. int_0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^oo x^(m-1)/(1+x)^(m+n)dx=k int_0^oo x^(n-1)/(1+x)^(m+n)dx , then k is equal to (A) m/n (B) 1 (C) n/m (D) none of these

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Suppose the function gn(x)=x^(2n+1)+an x+bn(N in N) satisfes the equa...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |