Home
Class 12
MATHS
Evaluate int (0)^(pi)(x)/(1+ cos^(2)x)dx...

Evaluate `int _(0)^(pi)(x)/(1+ cos^(2)x)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^{\pi} \frac{x}{1 + \cos^2 x} \, dx, \] we will use a symmetry property of definite integrals. ### Step 1: Apply the symmetry property Using the property of definite integrals, we know that: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] In our case, \( a = 0 \) and \( b = \pi \), so we can rewrite the integral as: \[ I = \int_0^{\pi} \frac{\pi - x}{1 + \cos^2(\pi - x)} \, dx. \] ### Step 2: Simplify the integral Next, we simplify the expression \( \cos(\pi - x) \): \[ \cos(\pi - x) = -\cos x \quad \text{so} \quad \cos^2(\pi - x) = \cos^2 x. \] Thus, we can rewrite the integral: \[ I = \int_0^{\pi} \frac{\pi - x}{1 + \cos^2 x} \, dx. \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_0^{\pi} \frac{x}{1 + \cos^2 x} \, dx \) 2. \( I = \int_0^{\pi} \frac{\pi - x}{1 + \cos^2 x} \, dx \) Adding these two equations gives: \[ 2I = \int_0^{\pi} \frac{x + (\pi - x)}{1 + \cos^2 x} \, dx = \int_0^{\pi} \frac{\pi}{1 + \cos^2 x} \, dx. \] ### Step 4: Solve for \( I \) Now we can express \( I \): \[ 2I = \pi \int_0^{\pi} \frac{1}{1 + \cos^2 x} \, dx. \] Thus, \[ I = \frac{\pi}{2} \int_0^{\pi} \frac{1}{1 + \cos^2 x} \, dx. \] ### Step 5: Evaluate the integral \( \int_0^{\pi} \frac{1}{1 + \cos^2 x} \, dx \) To evaluate this integral, we can use the substitution \( t = \tan x \): \[ dx = \frac{dt}{1 + t^2}, \quad \text{and the limits change from } 0 \text{ to } \infty. \] Thus, we have: \[ \int_0^{\pi} \frac{1}{1 + \cos^2 x} \, dx = \int_0^{\infty} \frac{1}{1 + \frac{1}{1 + t^2}} \cdot \frac{dt}{1 + t^2} = \int_0^{\infty} \frac{1 + t^2}{2 + t^2} \cdot \frac{dt}{1 + t^2}. \] This simplifies to: \[ \int_0^{\infty} \frac{dt}{2 + t^2}. \] This integral can be evaluated using the formula: \[ \int \frac{dt}{a^2 + t^2} = \frac{1}{a} \tan^{-1} \left( \frac{t}{a} \right) + C. \] In our case, \( a = \sqrt{2} \): \[ \int_0^{\infty} \frac{dt}{2 + t^2} = \frac{1}{\sqrt{2}} \left[ \tan^{-1}\left(\frac{t}{\sqrt{2}}\right) \right]_0^{\infty} = \frac{1}{\sqrt{2}} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{2\sqrt{2}}. \] ### Step 6: Substitute back to find \( I \) Substituting back into our expression for \( I \): \[ I = \frac{\pi}{2} \cdot \frac{\pi}{2\sqrt{2}} = \frac{\pi^2}{4\sqrt{2}}. \] Thus, the final answer is: \[ \boxed{\frac{\pi^2}{4\sqrt{2}}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(pi)(dx)/(1+3cos^(2)x)dx

int_(0)^( pi)(dx)/(1+cos^(2)x)

Evaluate int_(0)^(2pi) (dx)/(1+3cos^(2)x)

Evaluate int _(0)^(pi//2)(dx)/(1+ cos x)

Evaluate: int_(0)^(pi) (xsinx)/(1+cos^(2)x)dx

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

Evaluate: int_0^(pi//2)(sin x)/(1+cos^2x)dx

int_(0)^( pi)(dx)/(1+cos x)

int_(0)^(pi//4)(dx)/((1+cos2x))

Evaluate: int_0^pi(xsinx)/(1+cos^2x)dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate int (0)^(pi)(x)/(1+ cos^(2)x)dx.

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |