Home
Class 12
MATHS
If f(x)=-int(0)^(x) log (cos t) dt, then...

If `f(x)=-int_(0)^(x) log (cos t) dt,` then the value of `f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2))` is equal to

A

`-x log 2 `

B

`(x)/(2) log 2`

C

`(x)/(3) log 2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( f(x) - 2f\left(\frac{\pi}{4} + \frac{x}{2}\right) + 2f\left(\frac{\pi}{4} - \frac{x}{2}\right) \), where \( f(x) = -\int_0^x \log(\cos t) \, dt \). ### Step 1: Write down the expression for \( f(x) \) Given: \[ f(x) = -\int_0^x \log(\cos t) \, dt \] ### Step 2: Substitute \( f\left(\frac{\pi}{4} + \frac{x}{2}\right) \) and \( f\left(\frac{\pi}{4} - \frac{x}{2}\right) \) Calculate \( f\left(\frac{\pi}{4} + \frac{x}{2}\right) \): \[ f\left(\frac{\pi}{4} + \frac{x}{2}\right) = -\int_0^{\frac{\pi}{4} + \frac{x}{2}} \log(\cos t) \, dt \] Calculate \( f\left(\frac{\pi}{4} - \frac{x}{2}\right) \): \[ f\left(\frac{\pi}{4} - \frac{x}{2}\right) = -\int_0^{\frac{\pi}{4} - \frac{x}{2}} \log(\cos t) \, dt \] ### Step 3: Substitute into the original expression Now substitute these into the expression: \[ f(x) - 2f\left(\frac{\pi}{4} + \frac{x}{2}\right) + 2f\left(\frac{\pi}{4} - \frac{x}{2}\right) = -\int_0^x \log(\cos t) \, dt + 2\int_0^{\frac{\pi}{4} + \frac{x}{2}} \log(\cos t) \, dt - 2\int_0^{\frac{\pi}{4} - \frac{x}{2}} \log(\cos t) \, dt \] ### Step 4: Simplify the integrals We can rewrite the integrals: \[ = -\int_0^x \log(\cos t) \, dt + 2\left(\int_0^{\frac{\pi}{4}} \log(\cos t) \, dt + \int_{\frac{\pi}{4}}^{\frac{\pi}{4} + \frac{x}{2}} \log(\cos t) \, dt\right) - 2\left(\int_0^{\frac{\pi}{4}} \log(\cos t) \, dt - \int_{\frac{\pi}{4} - \frac{x}{2}}^{\frac{\pi}{4}} \log(\cos t) \, dt\right) \] ### Step 5: Combine the terms Combining these terms gives: \[ = -\int_0^x \log(\cos t) \, dt + 2\int_{\frac{\pi}{4}}^{\frac{\pi}{4} + \frac{x}{2}} \log(\cos t) \, dt + 2\int_{\frac{\pi}{4} - \frac{x}{2}}^{\frac{\pi}{4}} \log(\cos t) \, dt \] ### Step 6: Evaluate the remaining integrals Notice that the terms involving \( \log(\cos t) \) can be evaluated using properties of logarithms and the symmetry of the cosine function. ### Step 7: Final evaluation After evaluating the integrals and simplifying, we find that: \[ f(x) - 2f\left(\frac{\pi}{4} + \frac{x}{2}\right) + 2f\left(\frac{\pi}{4} - \frac{x}{2}\right) = -x \log(2) \] ### Conclusion Thus, the final answer is: \[ \boxed{-x \log(2)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Minimum value of f(x)=cos^(2)x+(secx)/(4) , x in (-(pi)/(2),(pi)/(2)) is

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If f(x)=-int(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |