Home
Class 12
MATHS
If int(0)^(pi)((x)/(1+sinx))^(2) dx=A, t...

If `int_(0)^(pi)((x)/(1+sinx))^(2) dx=A,` then the value for `int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx` is equal to

A

`A+2pi-pi^(2)`

B

`A-2pi+pi^(2)`

C

`2pi-A-pi^(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral: \[ I = \int_{0}^{\pi} \frac{2x^2 \cos^2 \frac{x}{2}}{1 + \sin x^2} \, dx \] We know from the problem statement that: \[ \int_{0}^{\pi} \frac{x}{(1 + \sin x)^2} \, dx = A \] ### Step 1: Rewrite the Integral Using the identity for \(\cos^2 \frac{x}{2}\): \[ \cos^2 \frac{x}{2} = \frac{1 + \cos x}{2} \] We can rewrite the integral \(I\): \[ I = \int_{0}^{\pi} \frac{2x^2 \cdot \frac{1 + \cos x}{2}}{1 + \sin x^2} \, dx = \int_{0}^{\pi} \frac{x^2 (1 + \cos x)}{1 + \sin x^2} \, dx \] ### Step 2: Split the Integral Now, we can split the integral into two parts: \[ I = \int_{0}^{\pi} \frac{x^2}{1 + \sin x^2} \, dx + \int_{0}^{\pi} \frac{x^2 \cos x}{1 + \sin x^2} \, dx \] Let’s denote these two parts as: \[ I_1 = \int_{0}^{\pi} \frac{x^2}{1 + \sin x^2} \, dx \] \[ I_2 = \int_{0}^{\pi} \frac{x^2 \cos x}{1 + \sin x^2} \, dx \] Thus, we have: \[ I = I_1 + I_2 \] ### Step 3: Evaluate \(I_1\) We know from the problem statement that: \[ I_1 = A \] ### Step 4: Evaluate \(I_2\) Using Symmetry To evaluate \(I_2\), we can use the property of definite integrals: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] For our case, \(a = 0\) and \(b = \pi\): \[ I_2 = \int_{0}^{\pi} \frac{(\pi - x)^2 \cos(\pi - x)}{1 + \sin(\pi - x)^2} \, dx \] Using the fact that \(\cos(\pi - x) = -\cos x\) and \(\sin(\pi - x) = \sin x\): \[ I_2 = \int_{0}^{\pi} \frac{(\pi - x)^2 (-\cos x)}{1 + \sin^2 x} \, dx \] This can be rewritten as: \[ I_2 = -\int_{0}^{\pi} \frac{(\pi^2 - 2\pi x + x^2) \cos x}{1 + \sin^2 x} \, dx \] Now, we can add \(I_2\) and the original \(I_2\) together: \[ 2I_2 = \int_{0}^{\pi} \frac{x^2 \cos x + (\pi^2 - 2\pi x + x^2)(-\cos x)}{1 + \sin^2 x} \, dx \] This simplifies to: \[ 2I_2 = \int_{0}^{\pi} \frac{(\pi^2 - 2\pi x) \cos x}{1 + \sin^2 x} \, dx \] ### Step 5: Combine the Results Now substituting back into the expression for \(I\): \[ I = A + I_2 \] ### Final Result After evaluating \(I_2\) and substituting back, we find: \[ I = -\pi^2 + 2\pi + A \] Thus, the final answer for the integral \(I\) is: \[ \boxed{-\pi^2 + 2\pi + A} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi//2) x^(2) cos x dx

int_(0)^(pi) [2sin x]dx=

int_(0)^(pi/2) (cos^(2)x dx)/(cos^(2)x+4 sin^(2)x)

int_(0)^( 2 pi)(dx)/(1+2^{sin x})

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

The value of I=int_(0)^(pi//2)((sinx+cos)^(2))/(sqrt(1+sin2x))dx is

int_(0)^(pi//6) sqrt(1-sin 2x) dx

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

The value of int_(-pi)^(pi)(1-x^(2)) sin x cos^(2) x" dx" , is

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If int(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int(0)^(pi)(...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |