Home
Class 12
MATHS
If f(x)=int(0)^(x) log ((1-t)/(1+t)) dt,...

If `f(x)=int_(0)^(x) log ((1-t)/(1+t)) dt`, then discuss whether even or odd?

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = \int_{0}^{x} \log\left(\frac{1-t}{1+t}\right) dt \) is even or odd, we will follow these steps: ### Step 1: Define the function and its negative argument We start with the function defined as: \[ f(x) = \int_{0}^{x} \log\left(\frac{1-t}{1+t}\right) dt \] Next, we will evaluate \( f(-x) \): \[ f(-x) = \int_{0}^{-x} \log\left(\frac{1-t}{1+t}\right) dt \] ### Step 2: Change of variable in the integral To evaluate \( f(-x) \), we perform a change of variable. Let \( t = -r \), then \( dt = -dr \). Changing the limits accordingly: - When \( t = 0 \), \( r = 0 \) - When \( t = -x \), \( r = x \) Thus, we have: \[ f(-x) = \int_{0}^{x} \log\left(\frac{1-(-r)}{1+(-r)}\right)(-dr) = -\int_{0}^{x} \log\left(\frac{1+r}{1-r}\right) dr \] ### Step 3: Simplifying the logarithmic expression Using the property of logarithms, we can rewrite: \[ \log\left(\frac{1+r}{1-r}\right) = -\log\left(\frac{1-t}{1+t}\right) \] Thus, we have: \[ f(-x) = -\left(-\int_{0}^{x} \log\left(\frac{1-t}{1+t}\right) dt\right) = \int_{0}^{x} \log\left(\frac{1-t}{1+t}\right) dt = f(x) \] ### Step 4: Conclusion Since \( f(-x) = f(x) \), we conclude that the function \( f(x) \) is an **even function**. ### Summary The function \( f(x) = \int_{0}^{x} \log\left(\frac{1-t}{1+t}\right) dt \) is even because \( f(-x) = f(x) \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Given a function g, continous everywhere such that g (1)=5 and int _(0)^(1) g (t) dt =2. If f (x) =1/2 int _(0) ^(x) (x -t)^(2) g (t) dt, then find the value of f '(1)+f''(1).

" If " f(x) =int_(0)^(x)" t sin t dt tehn " f(x) is

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(0)^(x)"cos" ((t^(2)+2t+1)/(5))dt,o>x>2, then

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

If f(x)=-int_(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2)) is equal to

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If f(x)=int(0)^(x) log ((1-t)/(1+t)) dt, then discuss whether even or ...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |