Home
Class 12
MATHS
Prove that int(0)^(25)e^(x-[x])dx=25(e-1...

Prove that `int_(0)^(25)e^(x-[x])dx=25(e-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \int_{0}^{25} e^{x - [x]} \, dx = 25(e - 1), \] we will break down the integral using the properties of the greatest integer function \([x]\). ### Step 1: Understanding the function \(e^{x - [x]}\) The expression \(x - [x]\) represents the fractional part of \(x\), denoted as \(\{x\}\). Thus, we can rewrite the integral as: \[ \int_{0}^{25} e^{x - [x]} \, dx = \int_{0}^{25} e^{\{x\}} \, dx. \] ### Step 2: Splitting the integral The function \([x]\) is constant within each interval \([n, n+1)\) for \(n = 0, 1, 2, \ldots, 24\). Therefore, we can split the integral into 25 parts: \[ \int_{0}^{25} e^{\{x\}} \, dx = \sum_{n=0}^{24} \int_{n}^{n+1} e^{\{x\}} \, dx. \] ### Step 3: Evaluating each integral Within each interval \([n, n+1)\), we have: \[ \{x\} = x - n. \] Thus, we can rewrite the integral over each interval: \[ \int_{n}^{n+1} e^{\{x\}} \, dx = \int_{n}^{n+1} e^{x - n} \, dx = e^{-n} \int_{n}^{n+1} e^{x} \, dx. \] Now, we can evaluate the integral: \[ \int_{n}^{n+1} e^{x} \, dx = [e^{x}]_{n}^{n+1} = e^{n+1} - e^{n}. \] ### Step 4: Combining the results Now substituting back, we have: \[ \int_{n}^{n+1} e^{\{x\}} \, dx = e^{-n} (e^{n+1} - e^{n}) = e^{-n} e^{n} (e - 1) = (e - 1). \] ### Step 5: Summing over all intervals Since there are 25 intervals from \(n = 0\) to \(n = 24\), we can sum the results: \[ \int_{0}^{25} e^{\{x\}} \, dx = \sum_{n=0}^{24} (e - 1) = 25(e - 1). \] ### Conclusion Thus, we have shown that: \[ \int_{0}^{25} e^{x - [x]} \, dx = 25(e - 1). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2)e^(x)\ dx

int_(0)^(2) e^(x) dx

1. int_(0)^(oo)e^(-x/2)dx

int_(0)^(1) x e^(x) dx=1

int_0^1000 e^(x-[x])dx

Prove that int_0^1x e^x dx=1

int_(-1)^(1)e^(2x)dx

int_(0)^(1)x e^(x^(2)) dx

Prove that int_(1)^(e)(lnx)^(4)dx=9e-24 .

Prove that 1 le int_(0)^(1) e^(x^(2))dxle e

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Prove that int(0)^(25)e^(x-[x])dx=25(e-1).

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |