Home
Class 12
MATHS
The function f(x)=int(0)^(x) log (|sin t...

The function `f(x)=int_(0)^(x) log _(|sin t|)(sin t + (1)/(2)) dt`, where `x in (0,2pi)`, then `f(x)` strictly increases in the interval

A

`((pi)/(6),(5pi)/(6))`

B

`((5pi)/(6),2pi)`

C

`((pi)/(6),(7pi)/(6))`

D

`((5pi)/(6),(7pi)/(6))`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the intervals in which the function \( f(x) = \int_{0}^{x} \log_{|\sin t|} \left( \sin t + \frac{1}{2} \right) dt \) is strictly increasing, we will follow these steps: ### Step 1: Find the derivative \( f'(x) \) Using the Fundamental Theorem of Calculus, we can differentiate \( f(x) \): \[ f'(x) = \log_{|\sin x|} \left( \sin x + \frac{1}{2} \right) \] ### Step 2: Determine when \( f'(x) > 0 \) For \( f(x) \) to be strictly increasing, we need: \[ f'(x) > 0 \] This means: \[ \log_{|\sin x|} \left( \sin x + \frac{1}{2} \right) > 0 \] ### Step 3: Analyze the logarithmic condition The logarithm is positive when its argument is greater than 1. Thus, we need: \[ \sin x + \frac{1}{2} > 1 \] This simplifies to: \[ \sin x > \frac{1}{2} \] ### Step 4: Analyze the base condition For the logarithm to be defined, the base must also be positive: \[ |\sin x| > 0 \] This implies: \[ \sin x > 0 \] ### Step 5: Solve the inequalities 1. From \( \sin x > \frac{1}{2} \): - The solutions are in the intervals: \[ x \in \left( \frac{\pi}{6}, \frac{5\pi}{6} \right) \] 2. From \( \sin x > 0 \): - The solutions are in the intervals: \[ x \in (0, \pi) \] ### Step 6: Find the intersection of the intervals Now, we need to find the intersection of the intervals \( \left( \frac{\pi}{6}, \frac{5\pi}{6} \right) \) and \( (0, \pi) \): The intersection is: \[ x \in \left( \frac{\pi}{6}, \frac{5\pi}{6} \right) \] ### Conclusion Thus, the function \( f(x) \) is strictly increasing in the interval: \[ \left( \frac{\pi}{6}, \frac{5\pi}{6} \right) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

For the functions f(x)= int_(0)^(x) (sin t)/t dt where x gt 0 . At x=n pi f(x) attains

" If " f(x) =int_(0)^(x)" t sin t dt tehn " f(x) is

Show that the function f(x) = log (sin x) (i) is strictly increasing in the interval ]0,pi/2[ . (ii) is strictly decreasing in the interval ]pi/2,pi[ .

Let f(x)=int_(0)^(x)(sin^(100)t)/(sin^(100)t+cos^(100)t)dt , then f(2pi)=

The maximum value of f(x) =int_(0)^(1) t sin (x+pi t)dt is

f(x)=int_0^x(e^t-1)(t-1)(sint-cost)sin t dt ,AAx in (-pi/2, 2pi), then f(x) is decreasing in :

If f(x)=int_(0)^(x) log ((1-t)/(1+t)) dt , then discuss whether even or odd?

If f(x)=int_(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt (pi)/2 then

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The function f(x)=int(0)^(x) log (|sin t|)(sin t + (1)/(2)) dt, where ...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |