Home
Class 12
MATHS
f:(0,infty)rarrR and F(x)=int(0)^(x)t f(...

`f:(0,infty)rarrR and F(x)=int_(0)^(x)t f(t)dt`
If `F(x^(2))=x^(4)+x^(5),"then" Sigma_(r=1)^(12)f(r^(2))` is equal to S

A

216

B

219

C

221

D

223

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning outlined in the video transcript. ### Step 1: Understand the given function We are given a function \( F(x) \) defined as: \[ F(x) = \int_0^x t f(t) dt \] and we know that: \[ F(x^2) = x^4 + x^5 \] ### Step 2: Differentiate both sides To find \( f(x) \), we will differentiate both sides of the equation \( F(x^2) = x^4 + x^5 \) with respect to \( x \). Using the chain rule and Leibniz rule for differentiation under the integral sign: \[ \frac{d}{dx} F(x^2) = \frac{d}{dx} \left( \int_0^{x^2} t f(t) dt \right) = x^2 f(x^2) \cdot 2x = 2x^3 f(x^2) \] Differentiating the right-hand side: \[ \frac{d}{dx}(x^4 + x^5) = 4x^3 + 5x^4 \] ### Step 3: Set the derivatives equal Now we equate the two results: \[ 2x^3 f(x^2) = 4x^3 + 5x^4 \] ### Step 4: Solve for \( f(x^2) \) Dividing both sides by \( 2x^3 \) (assuming \( x \neq 0 \)): \[ f(x^2) = \frac{4x^3 + 5x^4}{2x^3} = 2 + \frac{5}{2} x \] ### Step 5: Find \( f(x) \) Since \( f(x^2) = 2 + \frac{5}{2} x \), we can express \( f(x) \) by substituting \( x \) with \( \sqrt{x} \): \[ f(x) = 2 + \frac{5}{2} \sqrt{x} \] ### Step 6: Calculate \( \Sigma_{r=1}^{12} f(r^2) \) Now we need to compute: \[ \Sigma_{r=1}^{12} f(r^2) = \Sigma_{r=1}^{12} \left( 2 + \frac{5}{2} r \right) \] This can be separated into two summations: \[ = \Sigma_{r=1}^{12} 2 + \Sigma_{r=1}^{12} \frac{5}{2} r \] Calculating the first summation: \[ \Sigma_{r=1}^{12} 2 = 2 \times 12 = 24 \] Calculating the second summation using the formula for the sum of the first \( n \) natural numbers: \[ \Sigma_{r=1}^{12} r = \frac{12 \times 13}{2} = 78 \] Thus: \[ \Sigma_{r=1}^{12} \frac{5}{2} r = \frac{5}{2} \times 78 = 195 \] ### Step 7: Combine the results Now we combine both results: \[ \Sigma_{r=1}^{12} f(r^2) = 24 + 195 = 219 \] ### Final Answer Thus, the value of \( S \) is: \[ \boxed{219} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f : (0,oo) to R and F(x)=int_(0)^(x)t f(t)dt . If F(x^(2))=x^(4)+x^(5) , then

Let f : (0, oo) rarr R be a continuous function such that f(x) = int_(0)^(x) t f(t) dt . If f(x^(2)) = x^(4) + x^(5) , then sum_(r = 1)^(12) f(r^(2)) , is equal to

Let f:(0,oo)to R be a continuous function such that F(x)=int_(0)^(x^(2)) tf(t)dt. "If "F(x^(2))=x^(4)+x^(5),"then "sum_(r=1)^(12) f(r^(2))=

Let f:(0,oo)to R and F(x)=int_(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x) , then f(4) equals

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

Let f: (0,oo)->R and F(x^3)=int_0^ 3f(t)dt, if F(x^3)=x^3(x^2+x+1) .Then f(27)=

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. f:(0,infty)rarrR and F(x)=int(0)^(x)t f(t)dt If F(x^(2))=x^(4)+x^(5)...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |