Home
Class 12
MATHS
Evaluate I(b)=int(0)^(1)(x^(b))dx=int(0)...

Evaluate `I(b)=int_(0)^(1)(x^(b))dx=int_(0)^(1)(x^(b)-1)/("ln"x)dx,bge0`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I(b) = \int_0^1 x^b \, dx \) and show that it is equal to \( \int_0^1 \frac{x^b - 1}{\ln x} \, dx \) for \( b \geq 0 \), we will follow these steps: ### Step 1: Evaluate \( I(b) \) We start with the integral: \[ I(b) = \int_0^1 x^b \, dx \] To evaluate this integral, we use the formula for the integral of a power function: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] Thus, we have: \[ I(b) = \left[ \frac{x^{b+1}}{b+1} \right]_0^1 \] Evaluating this from 0 to 1 gives: \[ I(b) = \frac{1^{b+1}}{b+1} - \lim_{x \to 0^+} \frac{x^{b+1}}{b+1} \] Since \( b \geq 0 \), as \( x \to 0 \), \( x^{b+1} \to 0 \). Therefore: \[ I(b) = \frac{1}{b+1} \] ### Step 2: Differentiate \( I(b) \) Next, we differentiate \( I(b) \) with respect to \( b \): \[ \frac{d}{db} I(b) = \frac{d}{db} \left( \frac{1}{b+1} \right) = -\frac{1}{(b+1)^2} \] ### Step 3: Relate to the second integral Now we consider the integral: \[ \int_0^1 \frac{x^b - 1}{\ln x} \, dx \] We can differentiate this integral with respect to \( b \): \[ \frac{d}{db} \int_0^1 \frac{x^b - 1}{\ln x} \, dx = \int_0^1 \frac{\partial}{\partial b} \left( \frac{x^b - 1}{\ln x} \right) \, dx = \int_0^1 \frac{x^b \ln x}{\ln x} \, dx = \int_0^1 x^b \, dx = I(b) \] ### Step 4: Set up the equation From the differentiation, we have: \[ \frac{d}{db} I(b) = \int_0^1 \frac{x^b - 1}{\ln x} \, dx \] Thus, we can equate the two expressions: \[ -\frac{1}{(b+1)^2} = \int_0^1 \frac{x^b - 1}{\ln x} \, dx \] ### Step 5: Integrate back to find \( I(b) \) Integrating both sides with respect to \( b \): \[ I(b) = -\int \frac{1}{(b+1)^2} \, db = -\left(-\frac{1}{b+1}\right) + C = \frac{1}{b+1} + C \] ### Step 6: Determine the constant \( C \) To find the constant \( C \), we can evaluate \( I(0) \): \[ I(0) = \int_0^1 x^0 \, dx = \int_0^1 1 \, dx = 1 \] From our expression: \[ I(0) = \frac{1}{0+1} + C = 1 + C \] Setting this equal to 1 gives: \[ 1 + C = 1 \implies C = 0 \] ### Final Result Thus, we have: \[ I(b) = \frac{1}{b+1} \] And we also find that: \[ I(b) = \int_0^1 \frac{x^b - 1}{\ln x} \, dx \] So the final result is: \[ I(b) = \ln(b+1) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1)x(1-x)^(n)dx

int_(0)^(1) x dx

(1) Evaluate int_(0)^(1)x^(7)*dx

Evaluate: int_(0)^(1) log (1/x-1)dx

int_(0)^(1)(dx)/(1+x)

Evaluate: int_(0)^1(dx)/(1+x^2)

Evaluate : int_(0)^(1) (1-x)^(3//2) dx

Evaluate int_(0)^(1)(ln(1+x))/(1+x)dx

Evaluate: int_(0)^(1)(xe^(x))/(1+x)^(2) dx

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate I(b)=int(0)^(1)(x^(b))dx=int(0)^(1)(x^(b)-1)/("ln"x)dx,bge0.

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |