Home
Class 12
MATHS
The value of int(0)^(pi//2)(log(1+x si...

The value of
`int_(0)^(pi//2)(log(1+x sin^(2) theta))/(sin^(2)theta)d theta,xge0` is equal to

A

`pi(sqrt(1+x-1))`

B

`pi(sqrt(1+x-2))`

C

`sqrtpi(sqrt(1+x-1))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I(x) = \int_{0}^{\frac{\pi}{2}} \frac{\log(1 + x \sin^2 \theta)}{\sin^2 \theta} \, d\theta \] where \( x \geq 0 \), we will follow these steps: ### Step 1: Evaluate \( I(0) \) First, we substitute \( x = 0 \) into the integral: \[ I(0) = \int_{0}^{\frac{\pi}{2}} \frac{\log(1 + 0 \cdot \sin^2 \theta)}{\sin^2 \theta} \, d\theta = \int_{0}^{\frac{\pi}{2}} \frac{\log(1)}{\sin^2 \theta} \, d\theta = \int_{0}^{\frac{\pi}{2}} 0 \, d\theta = 0 \] ### Step 2: Differentiate \( I(x) \) with respect to \( x \) Next, we differentiate \( I(x) \): \[ I'(x) = \frac{d}{dx} \int_{0}^{\frac{\pi}{2}} \frac{\log(1 + x \sin^2 \theta)}{\sin^2 \theta} \, d\theta \] Using Leibniz's rule for differentiation under the integral sign, we have: \[ I'(x) = \int_{0}^{\frac{\pi}{2}} \frac{\partial}{\partial x} \left( \frac{\log(1 + x \sin^2 \theta)}{\sin^2 \theta} \right) d\theta \] Calculating the derivative inside the integral: \[ \frac{\partial}{\partial x} \log(1 + x \sin^2 \theta) = \frac{\sin^2 \theta}{1 + x \sin^2 \theta} \] Thus, \[ I'(x) = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2 \theta}{1 + x \sin^2 \theta} \, d\theta \] ### Step 3: Solve \( I'(x) \) To solve \( I'(x) \), we can use the substitution \( u = \sin^2 \theta \), which gives \( du = 2 \sin \theta \cos \theta \, d\theta \) or \( d\theta = \frac{du}{2\sqrt{u(1-u)}} \). The limits change from \( \theta = 0 \) to \( \theta = \frac{\pi}{2} \) to \( u = 0 \) to \( u = 1 \): \[ I'(x) = \int_{0}^{1} \frac{u}{1 + xu} \cdot \frac{1}{2\sqrt{u(1-u)}} \, du \] This integral can be solved using standard techniques or known results. ### Step 4: Integrate \( I'(x) \) The integral can be simplified and evaluated, leading to: \[ I'(x) = \frac{\pi}{2\sqrt{x(1+x)}} \] ### Step 5: Integrate \( I'(x) \) to find \( I(x) \) Now, we integrate \( I'(x) \): \[ I(x) = \int I'(x) \, dx = \int \frac{\pi}{2\sqrt{x(1+x)}} \, dx \] Using the substitution \( u = \sqrt{x(1+x)} \), we can evaluate this integral. The result will be: \[ I(x) = \frac{\pi}{2} (\sqrt{1+x} - 1) + C \] ### Step 6: Determine the constant \( C \) From our earlier evaluation, we know \( I(0) = 0 \): \[ I(0) = \frac{\pi}{2} (1 - 1) + C = 0 \implies C = 0 \] Thus, the final result is: \[ I(x) = \frac{\pi}{2} (\sqrt{1+x} - 1) \] ### Final Answer The value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \frac{\log(1 + x \sin^2 \theta)}{\sin^2 \theta} \, d\theta = \frac{\pi}{2} (\sqrt{1+x} - 1) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

If f(x)=int_0^(pi/2)ln(1+xsin^2theta)/(sin^2theta) d theta, x >= 0 then :

int_0^(pi//2)(theta/sintheta)^2d theta=

Evaluate: int_(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a >0

The value of I(n) =int_0^pi(sin ^2n theta)/(sin^2theta) d theta is (AA n in N)

The value of the integral int_(0)^(pi//4) (sin theta+cos theta)/(9+16 sin 2theta)d theta , is

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

Evaluate int_(0)^(pi//2) cos theta tan ^(-1) ( sin theta)d theta .

The value of int(1+sin2theta)/(sintheta-costheta)d""theta is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The value of int(0)^(pi//2)(log(1+x sin^(2) theta))/(sin^(2)theta)d ...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |