Home
Class 12
MATHS
Evaluate S=sum(r=0)^(n-1)(1)/(sqrt(4n^(2...

Evaluate `S=sum_(r=0)^(n-1)(1)/(sqrt(4n^(2)-r^(2)))as n rarrinfty`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( S = \sum_{r=0}^{n-1} \frac{1}{\sqrt{4n^2 - r^2}} \) as \( n \to \infty \), we will follow these steps: ### Step 1: Rewrite the Summation We start with the expression: \[ S = \sum_{r=0}^{n-1} \frac{1}{\sqrt{4n^2 - r^2}} \] As \( n \to \infty \), we can interpret this summation as a Riemann sum. To do this, we will express \( r \) in terms of \( n \). ### Step 2: Change of Variables Let \( x = \frac{r}{n} \). Then, \( r = nx \) and as \( r \) goes from \( 0 \) to \( n-1 \), \( x \) goes from \( 0 \) to \( 1 - \frac{1}{n} \). The increment \( dr \) can be approximated as \( n \, dx \). Thus, we rewrite the summation: \[ S \approx \sum_{r=0}^{n-1} \frac{1}{\sqrt{4n^2 - (nx)^2}} \cdot \frac{1}{n} \] This becomes: \[ S \approx \int_{0}^{1} \frac{1}{\sqrt{4n^2 - n^2x^2}} \, dx \] ### Step 3: Simplify the Integral We can factor out \( n^2 \) from the square root: \[ S \approx \int_{0}^{1} \frac{1}{\sqrt{n^2(4 - x^2)}} \, dx = \frac{1}{n} \int_{0}^{1} \frac{1}{\sqrt{4 - x^2}} \, dx \] ### Step 4: Evaluate the Integral The integral \( \int \frac{1}{\sqrt{4 - x^2}} \, dx \) can be evaluated using the substitution \( x = 2 \sin(\theta) \): \[ dx = 2 \cos(\theta) \, d\theta \] The limits change as follows: - When \( x = 0 \), \( \theta = 0 \) - When \( x = 1 \), \( \theta = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \) Thus, the integral becomes: \[ \int_{0}^{\frac{\pi}{6}} \frac{2 \cos(\theta)}{\sqrt{4 - 4\sin^2(\theta)}} \, d\theta = \int_{0}^{\frac{\pi}{6}} \frac{2 \cos(\theta)}{2 \cos(\theta)} \, d\theta = \int_{0}^{\frac{\pi}{6}} 1 \, d\theta = \frac{\pi}{6} \] ### Step 5: Final Calculation Putting everything together, we have: \[ S \approx \frac{1}{n} \cdot \frac{\pi}{6} \] As \( n \to \infty \), the term \( \frac{1}{n} \) approaches \( 0 \), and thus: \[ S \to \frac{\pi}{6} \] ### Conclusion Therefore, the final result is: \[ \boxed{\frac{\pi}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

Evaluate: sum_(r=1)^n(3^r-2^r)

l isum_(n-gtoo)sum_(r=1)^n1/(sqrt(4n^2-r^2))

Evaluate sum_(r=1)^(n-1) cos^(2) ((rpi)/(n)) .

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

Let S be the sum of all possible determinants of order 2 having 0,1,2 and 3 as their elements,. Find the common root alpha of the equations x^(2)+ax+[m+1]=0, x^(2)+bx+[m+4]=0 and x^(2)-cx+[m+15]=0 such that alphagtS wherea+b+c=0 and m=sum_(n to 00)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) and [.] denotes the greates integer function.

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Let T_(n) = sum_(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S_(n) = sum_(r=0)^(n)(n)/(r^(2)-2r.n+2n^(2)) then

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate S=sum(r=0)^(n-1)(1)/(sqrt(4n^(2)-r^(2)))as n rarrinfty.

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |