Home
Class 12
MATHS
Evaluate lim(nrarrinfty)((1)/(2n+1)+(1)/...

Evaluate `lim_(nrarrinfty)((1)/(2n+1)+(1)/(2n+2)+......+(1)/(6n))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{n \to \infty} \left( \frac{1}{2n+1} + \frac{1}{2n+2} + \ldots + \frac{1}{6n} \right), \] we can rewrite the expression in summation form: 1. **Rewrite the sum**: The sum can be expressed as: \[ \sum_{r=1}^{4n} \frac{1}{2n + r}. \] 2. **Recognize the limit as a Riemann sum**: As \( n \to \infty \), this summation can be interpreted as a Riemann sum for the integral of a function. Specifically, we can relate it to the integral of \( \frac{1}{2x + 1} \) over the interval from \( 0 \) to \( 4 \): \[ \lim_{n \to \infty} \sum_{r=1}^{4n} \frac{1}{2n + r} \cdot \frac{1}{n} \approx \int_0^4 \frac{1}{2x + 1} \, dx. \] 3. **Change of variables**: To convert the sum into an integral, we can set \( x = \frac{r}{n} \), which gives us \( r = nx \) and \( dr = n \, dx \). Thus, the sum becomes: \[ \frac{1}{n} \sum_{r=1}^{4n} \frac{1}{2n + r} \approx \int_0^4 \frac{1}{2n + nx} \, dx = \int_0^4 \frac{1}{n(2 + x)} \, dx. \] 4. **Evaluate the integral**: The integral simplifies to: \[ \int_0^4 \frac{1}{2 + x} \, dx. \] 5. **Calculate the integral**: The integral can be computed as follows: \[ \int \frac{1}{2+x} \, dx = \ln |2+x| + C. \] Evaluating from \( 0 \) to \( 4 \): \[ \left[ \ln(2+x) \right]_0^4 = \ln(6) - \ln(2) = \ln\left(\frac{6}{2}\right) = \ln(3). \] 6. **Final result**: Therefore, the limit evaluates to: \[ \lim_{n \to \infty} \left( \frac{1}{2n+1} + \frac{1}{2n+2} + \ldots + \frac{1}{6n} \right) = \ln(3). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

Evaluate: lim_(nrarr0) (((2n)!)/(n!n^(n)))^(1/n)

lim_(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

Evaluate lim_(ntooo) (1)/(1+n^(2))+(2)/(2+n^(2))+...+(n)/(n+n^(2)).

lim_(n rarr oo)2^(1/n)

The value of lim_(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n) is equal to

Evalute lim_(n->oo)[1/((n+1)(n+2))+1/((n+2)(n+4))+......+1/(6n^2)]

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

Evaluate lim_(n->oo)n[1/((n+1)(n+2))+1/((n+2)(n+4))+....+1/(6n^2)]

The value of lim_(nrarrinfty) ("sin"(pi)/(2n)."sin"(2pi)/(2n)."sin"(3pi)/(2n)..."sin"((n-1)pi)/(2n))^(1//n) is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate lim(nrarrinfty)((1)/(2n+1)+(1)/(2n+2)+......+(1)/(6n)).

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |