Home
Class 12
MATHS
The value of lim(nrarrinfty) ("sin"(pi)/...

The value of `lim_(nrarrinfty) ("sin"(pi)/(2n)."sin"(2pi)/(2n)."sin"(3pi)/(2n)..."sin"((n-1)pi)/(2n))^(1//n)` is equal to

A

`(1)/(2)`

B

`(1)/(3)`

C

`(1)/(4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the expression: \[ \lim_{n \to \infty} \left( \sin\left(\frac{\pi}{2n}\right) \sin\left(\frac{2\pi}{2n}\right) \sin\left(\frac{3\pi}{2n}\right) \cdots \sin\left(\frac{(n-1)\pi}{2n}\right) \right)^{\frac{1}{n}} \] Let’s denote this limit as \( L \): \[ L = \lim_{n \to \infty} \left( \prod_{r=1}^{n-1} \sin\left(\frac{r\pi}{2n}\right) \right)^{\frac{1}{n}} \] ### Step 1: Take the natural logarithm of \( L \) Taking the natural logarithm on both sides gives: \[ \ln L = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n-1} \ln\left(\sin\left(\frac{r\pi}{2n}\right)\right) \] ### Step 2: Convert the sum into an integral As \( n \to \infty \), the term \( \frac{r}{n} \) can be treated as a continuous variable. We can replace the sum with an integral by letting \( x = \frac{r}{n} \), which implies \( r = nx \) and \( \frac{1}{n} \) becomes \( dx \): \[ \ln L = \lim_{n \to \infty} \sum_{r=1}^{n-1} \frac{1}{n} \ln\left(\sin\left(\frac{r\pi}{2n}\right)\right) \approx \int_0^1 \ln\left(\sin\left(\frac{\pi x}{2}\right)\right) \, dx \] ### Step 3: Evaluate the integral The integral we need to evaluate is: \[ \int_0^1 \ln\left(\sin\left(\frac{\pi x}{2}\right)\right) \, dx \] To evaluate this integral, we can use a substitution. Let \( t = \frac{\pi x}{2} \), then \( dx = \frac{2}{\pi} dt \) and the limits change from \( x=0 \) to \( x=1 \) to \( t=0 \) to \( t=\frac{\pi}{2} \): \[ \int_0^1 \ln\left(\sin\left(\frac{\pi x}{2}\right)\right) \, dx = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \ln(\sin t) \, dt \] ### Step 4: Use known results It is known that: \[ \int_0^{\frac{\pi}{2}} \ln(\sin t) \, dt = -\frac{\pi}{2} \ln(2) \] Thus, substituting this result back, we have: \[ \ln L = \frac{2}{\pi} \left(-\frac{\pi}{2} \ln(2)\right) = -\ln(2) \] ### Step 5: Exponentiate to find \( L \) Exponentiating both sides gives: \[ L = e^{-\ln(2)} = \frac{1}{2} \] ### Conclusion Thus, the value of the limit is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(nrarroo)(2)/(n)(sin.(pi)/(2n)+sin.(2pi)/(2n)+sin.(3pi)/(2n)+....+sin.(npi)/(2n))

The value of lim_(nrarroo) 1/n^2[sin^(3)'(pi)/(4n)+2sin^(3)'(2pi)/(4n)+3sin^(3)'(3pi)/(4n)+"......."+n sin^(3)'(npi)/(4n)]

underset(nrarroo)"lim"[sin'(pi) /(n)+sin'(2pi) /(n)+"......"+sin((n-1))/(n) pi ] is equal to :

lim_(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] is equal to : (A) 0 (B) pi (C) 2 (D) ∞

The value of lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n) is

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

Evaluate lim_(ntooo)ncos((pi)/(4n))sin((pi)/(4n)).

Let 1, z_(1),z_(2),z_(3),…., z_(n-1) be the nth roots of unity. Then prove that (1-z_(1))(1 - z_(2)) …. (1-z_(n-1))= n . Also,deduce that sin .(pi)/(n) sin.(2pi)/(pi)sin.(3pi)/(n)...sin.((n-1)pi)/(n) = (pi)/(2^(n-1))

Let 1, z_(1),z_(2),z_(3),…., z_(n-1) be the nth roots of unity. Then prove that (1-z_(1))(1 - z_(2)) …. (1-z_(n-1))= n . Also,deduce that sin .(pi)/(n) sin.(2pi)/(pi)sin.(3pi)/(n)...sin.((n-1)pi)/(n) = (pi)/(2^(n-1))

If S=cos^2pi/2+cos^2(2pi)/n+....+cos^2((n-1)pi)/(n), then S equals

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The value of lim(nrarrinfty) ("sin"(pi)/(2n)."sin"(2pi)/(2n)."sin"(3pi...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |