Home
Class 12
MATHS
The interval [0,4] isdivided into n equa...

The interval `[0,4]` isdivided into n equal sub-intervals by the points `x_(0),x_(1),x_(2),…,x_(n-1),x_(n)"where" 0=x_(0)ltx_(1)ltx_(2)ltx_(3)lt…ltx_(n)=4`
If`deltax=x_(i)-x_(i-1)"for"i=1,2,3,...,n, "then"lim_(deltaxrarr0)sum_(i-1)^(n)x_(i)deltax` is equal to

A

(a)4

B

(b)8

C

(c)`(32)/(3)`

D

(d)16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit of the Riemann sum as \( \Delta x \) approaches 0. The interval \([0, 4]\) is divided into \( n \) equal sub-intervals, and we can express the points as follows: 1. **Define the sub-intervals**: - The length of each sub-interval is given by: \[ \Delta x = \frac{b - a}{n} = \frac{4 - 0}{n} = \frac{4}{n} \] - The points dividing the interval can be expressed as: \[ x_i = 0 + i \Delta x = \frac{4i}{n} \quad \text{for } i = 0, 1, 2, \ldots, n \] 2. **Set up the Riemann sum**: - The Riemann sum we need to evaluate is: \[ \lim_{\Delta x \to 0} \sum_{i=1}^{n} x_i \Delta x \] - Substituting \( x_i \) and \( \Delta x \): \[ \sum_{i=1}^{n} x_i \Delta x = \sum_{i=1}^{n} \left(\frac{4i}{n}\right) \left(\frac{4}{n}\right) = \frac{16}{n^2} \sum_{i=1}^{n} i \] 3. **Evaluate the sum of the first \( n \) natural numbers**: - The formula for the sum of the first \( n \) natural numbers is: \[ \sum_{i=1}^{n} i = \frac{n(n + 1)}{2} \] - Substituting this into our expression: \[ \frac{16}{n^2} \cdot \frac{n(n + 1)}{2} = \frac{16(n + 1)}{2n} = \frac{8(n + 1)}{n} \] 4. **Take the limit as \( n \to \infty \)**: - As \( n \) approaches infinity, \( \frac{8(n + 1)}{n} \) simplifies to: \[ \lim_{n \to \infty} \frac{8(n + 1)}{n} = \lim_{n \to \infty} 8 \left(1 + \frac{1}{n}\right) = 8 \cdot 1 = 8 \] 5. **Conclusion**: - Therefore, the limit is: \[ \lim_{\Delta x \to 0} \sum_{i=1}^{n} x_i \Delta x = 8 \] ### Final Answer: The limit is equal to \( 8 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

Find the total number of six digit numbers x_(1)x_(2)x_(3)x_(4)x_(5)x_(6) having the property x_(1)ltx__(2)lex_(3)ltx_(4)ltx_(5)lex_(6) .

Lt_(x rarr 0) ((1+x)^(n)-nx-1)/(x^(2)) n gt 1 is euqal to

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

If the equation x^(3)-3x+1=0 has three roos x_(1),x_(2),x_(3) where x_(1)ltx_(2)ltx_(3) then the value of ({x_(1)}+{x_(2)}+{x_(3)}) is ({.} F.P. of x ).

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

If barx represents the mean of n observations x_(1), x_(2),………., x_(n) , then values of Sigma_(i=1)^(n) (x_(i)-barx)

The means and variance of n observations x_(1),x_(2),x_(3),…x_(n) are 0 and 5 respectively. If sum_(i=1)^(n) x_(i)^(2) = 400 , then find the value of n

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The interval [0,4] isdivided into n equal sub-intervals by the points ...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |