Home
Class 12
MATHS
The value of lim(n to oo)(1)/(n).sum(r=1...

The value of `lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))` is equal to

A

`1+sqrt5`

B

`-1+sqrt5`

C

`-1+sqrt2`

D

`1+sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{2n} \frac{r}{\sqrt{n^2 + r^2}}, \] we will follow a step-by-step approach: ### Step 1: Rewrite the Sum We start by rewriting the expression inside the limit: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{2n} \frac{r}{\sqrt{n^2 + r^2}}. \] ### Step 2: Factor Out \(n^2\) from the Square Root Next, we factor out \(n^2\) from the square root in the denominator: \[ \sqrt{n^2 + r^2} = \sqrt{n^2(1 + \frac{r^2}{n^2})} = n\sqrt{1 + \frac{r^2}{n^2}}. \] Substituting this back into our limit gives: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{2n} \frac{r}{n\sqrt{1 + \frac{r^2}{n^2}}} = \lim_{n \to \infty} \frac{1}{n^2} \sum_{r=1}^{2n} \frac{r}{\sqrt{1 + \frac{r^2}{n^2}}}. \] ### Step 3: Change of Variables Now, we can change variables by letting \(t = \frac{r}{n}\). Then \(r = nt\) and as \(r\) goes from \(1\) to \(2n\), \(t\) goes from \(\frac{1}{n}\) to \(2\). The differential \(dr\) becomes \(n \, dt\). Thus, we can rewrite the sum as: \[ \lim_{n \to \infty} \sum_{r=1}^{2n} \frac{nt}{\sqrt{1 + t^2}} \cdot \frac{1}{n} = \lim_{n \to \infty} \sum_{r=1}^{2n} \frac{t}{\sqrt{1 + t^2}} \cdot \Delta t, \] where \(\Delta t = \frac{1}{n}\). ### Step 4: Convert the Sum to an Integral As \(n\) approaches infinity, the sum approaches the integral: \[ \int_{0}^{2} \frac{t}{\sqrt{1 + t^2}} \, dt. \] ### Step 5: Solve the Integral Now we need to evaluate the integral: \[ \int \frac{t}{\sqrt{1 + t^2}} \, dt. \] To solve this, we can use the substitution \(u = 1 + t^2\), which gives \(du = 2t \, dt\) or \(dt = \frac{du}{2t}\). Thus, \[ \int \frac{t}{\sqrt{1 + t^2}} \, dt = \frac{1}{2} \int u^{-1/2} \, du = \sqrt{1 + t^2} + C. \] ### Step 6: Evaluate the Definite Integral Now we evaluate the definite integral from \(0\) to \(2\): \[ \left[ \sqrt{1 + t^2} \right]_{0}^{2} = \sqrt{1 + 2^2} - \sqrt{1 + 0^2} = \sqrt{5} - 1. \] ### Conclusion Thus, the value of the limit is: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{2n} \frac{r}{\sqrt{n^2 + r^2}} = \sqrt{5} - 1. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

Evaluate lim_(n->oo)1/nsum_(r=n+1)^(2n)log_e(1+r/n)

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The value of lim(n to oo)(1)/(n).sum(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) ...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |