Home
Class 12
MATHS
The minimum odd value of 'a' (agt1) for ...

The minimum odd value of 'a' `(agt1)` for which `int_(10)^(19)(sinx)/(1+x^(a))dxlt(1)/(9),` is equal to

A

1

B

3

C

5

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum odd value of \( a \) (where \( a > 1 \)) such that \[ \int_{10}^{19} \frac{\sin x}{1 + x^a} \, dx < \frac{1}{9}. \] ### Step-by-Step Solution: 1. **Set Up the Integral**: We start with the integral: \[ I(a) = \int_{10}^{19} \frac{\sin x}{1 + x^a} \, dx. \] 2. **Use Inequalities**: We know that \( |\sin x| \leq 1 \) for all \( x \). Therefore, we can write: \[ \left| \frac{\sin x}{1 + x^a} \right| \leq \frac{1}{1 + x^a}. \] This leads to: \[ I(a) < \int_{10}^{19} \frac{1}{1 + x^a} \, dx. \] 3. **Estimate the Integral**: We can further estimate: \[ \frac{1}{1 + x^a} < \frac{1}{x^a} \quad \text{for } x \geq 10. \] Thus, we have: \[ I(a) < \int_{10}^{19} \frac{1}{x^a} \, dx. \] 4. **Calculate the Integral**: Now we compute the integral: \[ \int \frac{1}{x^a} \, dx = \frac{x^{-a + 1}}{-a + 1} = \frac{-1}{a - 1} x^{-a + 1}. \] Evaluating from 10 to 19 gives: \[ \int_{10}^{19} \frac{1}{x^a} \, dx = \left[ \frac{-1}{a - 1} \left(19^{-a + 1} - 10^{-a + 1}\right) \right]. \] 5. **Set Up the Inequality**: We want: \[ \frac{-1}{a - 1} \left(19^{-a + 1} - 10^{-a + 1}\right) < \frac{1}{9}. \] 6. **Simplify the Inequality**: This can be rearranged to: \[ 19^{-a + 1} - 10^{-a + 1} > -\frac{a - 1}{9}. \] 7. **Trial Values for \( a \)**: We need to find the minimum odd value of \( a > 1 \). We will try \( a = 3 \): \[ I(3) = \int_{10}^{19} \frac{1}{x^3} \, dx. \] Evaluating this integral: \[ = \left[ \frac{-1}{2} \left(19^{-2} - 10^{-2}\right) \right] = \frac{-1}{2} \left(\frac{1}{361} - \frac{1}{100}\right). \] Calculating this gives: \[ = \frac{-1}{2} \left(\frac{100 - 361}{36100}\right) = \frac{261}{72200} \approx 0.0036. \] 8. **Check the Condition**: We check if \( \frac{261}{72200} < \frac{1}{9} \): \[ \frac{1}{9} \approx 0.1111. \] Since \( 0.0036 < 0.1111 \), the condition holds. 9. **Conclusion**: Therefore, the minimum odd value of \( a \) for which the integral is less than \( \frac{1}{9} \) is: \[ \boxed{3}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(x)/(1+sinx)dx .

The value of int_(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

Estimate the absolute value of the integral int_(10)^(19)(sinx)/(1+x^8)dx

int(2sinx+(1)/(x))dx is equal to

The minimum value of 9^x+9^(1-x),x inR, is

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

int_(0)^(pi)(1)/(a^(2)-2acosx+1)dx,agt1 is equal to

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The absolute value of int_(10)^(19) (cosx)/(1+x^(8))dx , is

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The minimum odd value of 'a' (agt1) for which int(10)^(19)(sinx)/(1+x^...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |