Home
Class 12
MATHS
Evaluate int(0)^(infty) e^(-x)x^(3)dx....

Evaluate `int_(0)^(infty) e^(-x)x^(3)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{\infty} e^{-x} x^{3} \, dx \), we will use integration by parts multiple times. ### Step 1: Set up integration by parts We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = x^3 \) (which we will differentiate) - \( dv = e^{-x} \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we differentiate \( u \) and integrate \( dv \): - \( du = 3x^2 \, dx \) - \( v = -e^{-x} \) ### Step 3: Apply integration by parts Now we apply the integration by parts formula: \[ I = \left[ -x^3 e^{-x} \right]_{0}^{\infty} + \int_{0}^{\infty} 3x^2 e^{-x} \, dx \] ### Step 4: Evaluate the boundary term Now we evaluate the boundary term \( \left[ -x^3 e^{-x} \right]_{0}^{\infty} \): - As \( x \to \infty \), \( e^{-x} \) approaches 0 faster than \( x^3 \) approaches infinity, so \( -x^3 e^{-x} \to 0 \). - As \( x \to 0 \), \( -x^3 e^{-x} \to 0 \). Thus, the boundary term evaluates to 0: \[ \left[ -x^3 e^{-x} \right]_{0}^{\infty} = 0 \] ### Step 5: Simplify the integral Now we have: \[ I = 0 + \int_{0}^{\infty} 3x^2 e^{-x} \, dx = 3 \int_{0}^{\infty} x^2 e^{-x} \, dx \] ### Step 6: Repeat integration by parts We need to evaluate \( \int_{0}^{\infty} x^2 e^{-x} \, dx \). We will apply integration by parts again: Let: - \( u = x^2 \) - \( dv = e^{-x} \, dx \) Then: - \( du = 2x \, dx \) - \( v = -e^{-x} \) Applying integration by parts again: \[ \int x^2 e^{-x} \, dx = \left[ -x^2 e^{-x} \right]_{0}^{\infty} + \int 2x e^{-x} \, dx \] ### Step 7: Evaluate the boundary term again The boundary term \( \left[ -x^2 e^{-x} \right]_{0}^{\infty} \) evaluates to 0 for the same reasons as before. ### Step 8: Simplify the integral Thus: \[ \int_{0}^{\infty} x^2 e^{-x} \, dx = 0 + 2 \int_{0}^{\infty} x e^{-x} \, dx \] ### Step 9: Evaluate \( \int_{0}^{\infty} x e^{-x} \, dx \) We apply integration by parts one more time: Let: - \( u = x \) - \( dv = e^{-x} \, dx \) Then: - \( du = dx \) - \( v = -e^{-x} \) Applying integration by parts: \[ \int x e^{-x} \, dx = \left[ -x e^{-x} \right]_{0}^{\infty} + \int e^{-x} \, dx \] The boundary term \( \left[ -x e^{-x} \right]_{0}^{\infty} \) evaluates to 0. Thus: \[ \int_{0}^{\infty} x e^{-x} \, dx = 0 + \left[ -e^{-x} \right]_{0}^{\infty} = 0 - (-1) = 1 \] ### Step 10: Combine results Now we can combine our results: \[ \int_{0}^{\infty} x^2 e^{-x} \, dx = 2 \cdot 1 = 2 \] Thus: \[ I = 3 \cdot 2 = 6 \] ### Final Answer The value of the integral is: \[ \int_{0}^{\infty} e^{-x} x^{3} \, dx = 6 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(infty)e^(-x) sin^(n) x dx, if n is an even integer.

Evaluate int_(0)^(infty)(lnxdx)/(x^(2)+2x+4)

Evaluate : int_(0)^(4) x(4-x)^(3//2)dx

Evaluate int _(0)^(2) x^3 dx

Evaluate int _(0)^(infty) (tan^(-1)ax-tan^(-1)x)/(x)dx , where a is a parameter.

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

Evaluate int_(0)^(4)(e^(x))/(1+e^(2x))dx

The value of int _(0)^(infty)e-^(a^(2)x^(2)) dx is equal to

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

Evaluate : int_(-1)^(1)e^(x)dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate int(0)^(infty) e^(-x)x^(3)dx.

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |