Home
Class 12
MATHS
The true set values of 'a' for which th...

The true set values of 'a' for which the inequality `int _(a)^(0)(3^(-2x)-2.3^(-x)) dx ge 0` is true, is

A

`[0,1]`

B

`(-infty,-1]`

C

`[0,infty)`

D

`(-infty,-1]cup[0,infty)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \[ \int_{a}^{0} (3^{-2x} - 2 \cdot 3^{-x}) \, dx \geq 0, \] we will follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ \int_{a}^{0} 3^{-2x} \, dx - 2 \int_{a}^{0} 3^{-x} \, dx \geq 0. \] ### Step 2: Compute the First Integral The integral of \(3^{-2x}\) is: \[ \int 3^{-2x} \, dx = \frac{1}{-2 \ln(3)} \cdot 3^{-2x} + C. \] Now, we evaluate this from \(a\) to \(0\): \[ \left[ \frac{1}{-2 \ln(3)} \cdot 3^{-2x} \right]_{a}^{0} = \frac{1}{-2 \ln(3)} \left(3^{0} - 3^{-2a}\right) = \frac{1}{-2 \ln(3)} \left(1 - \frac{1}{3^{2a}}\right). \] ### Step 3: Compute the Second Integral The integral of \(3^{-x}\) is: \[ \int 3^{-x} \, dx = \frac{1}{-\ln(3)} \cdot 3^{-x} + C. \] Now, we evaluate this from \(a\) to \(0\): \[ \left[ \frac{1}{-\ln(3)} \cdot 3^{-x} \right]_{a}^{0} = \frac{1}{-\ln(3)} \left(3^{0} - 3^{-a}\right) = \frac{1}{-\ln(3)} \left(1 - \frac{1}{3^{a}}\right). \] ### Step 4: Substitute Back into the Inequality Substituting both integrals back into the inequality gives: \[ \frac{1}{-2 \ln(3)} \left(1 - \frac{1}{3^{2a}}\right) - 2 \cdot \frac{1}{-\ln(3)} \left(1 - \frac{1}{3^{a}}\right) \geq 0. \] ### Step 5: Simplify the Inequality Combining terms, we have: \[ \frac{1}{-2 \ln(3)} \left(1 - \frac{1}{3^{2a}}\right) + \frac{2}{\ln(3)} \left(1 - \frac{1}{3^{a}}\right) \geq 0. \] Multiplying through by \(-2 \ln(3)\) (noting that this reverses the inequality): \[ 1 - \frac{1}{3^{2a}} - 4 \left(1 - \frac{1}{3^{a}}\right) \leq 0. \] ### Step 6: Expand and Rearrange Expanding gives: \[ 1 - \frac{1}{3^{2a}} - 4 + \frac{4}{3^{a}} \leq 0, \] which simplifies to: \[ -\frac{1}{3^{2a}} + \frac{4}{3^{a}} - 3 \leq 0. \] ### Step 7: Let \( t = 3^{a} \) Let \(t = 3^{a}\), then the inequality becomes: \[ -t^{-2} + \frac{4}{t} - 3 \leq 0. \] Multiplying through by \(t^2\) (assuming \(t > 0\)) gives: \[ -1 + 4t - 3t^2 \leq 0. \] ### Step 8: Rearranging Rearranging yields: \[ 3t^2 - 4t + 1 \geq 0. \] ### Step 9: Find Roots Using the quadratic formula, the roots are: \[ t = \frac{4 \pm \sqrt{(4)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{4 \pm \sqrt{16 - 12}}{6} = \frac{4 \pm 2}{6}. \] Thus, the roots are: \[ t = 1 \quad \text{and} \quad t = \frac{1}{3}. \] ### Step 10: Analyze the Quadratic The quadratic \(3t^2 - 4t + 1\) opens upwards (since the coefficient of \(t^2\) is positive). The intervals where it is non-negative are: \[ (-\infty, \frac{1}{3}] \cup [1, \infty). \] ### Step 11: Convert Back to 'a' Since \(t = 3^a\), we have: 1. \(3^a \leq \frac{1}{3} \Rightarrow a \leq -1\) 2. \(3^a \geq 1 \Rightarrow a \geq 0\) ### Final Result Thus, the true set of values for \(a\) is: \[ (-\infty, -1] \cup [0, \infty). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The set of values of alpha(alphagt0) for which the inequality int_(-alpha)^(alpha)e^(x)dxgt3/2 holds true is

The set of values of alpha (alpha gt 0) for which the inequality int_(-alpha)^(alpha) e^x dx gt 3/2 holds true is :

int_(0)^(3)|3-2x|dx

The values of 'a' for which int_0^(a) (3x^(2)+4x-5)dx lt a^(3)-2 are

The exhaustive set of values of a for which inequation (a -1)x^2- (a+1)x+ a -1>=0 is true AA x >2 (a) (-oo,1) (b)[7/3,oo) (c) [3/7,oo) (d) none of these

The set of values of x for which the inequalities x^2 -2x+3 gt 0, 2x^2+4x +3gt 0 hold simultancously , is

Find the value of int_(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx .

Find the set of values of x for which the inequalities x^(2)-3x-10 lt0, 10x-x^(2)-16 gt 0 hold simultaneously.

Find the set of values of x for which the inequalities x^(2)-3x-10 lt0, 10x-x^(2)-16 gt 0 hold simultaneously.

int_(0)^(3)(x^(2)+1)dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The true set values of 'a' for which the inequality int (a)^(0)(3^(-...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |