Home
Class 12
MATHS
The value of the definite integral int(0...

The value of the definite integral `int_(0)^(2npi) max (sinx,sin^(-1)( sinx)) dx` equals to (where, n in l)

A

`(n(pi^(2)-4))/(2)`

B

`(n(pi^(2)-4))/(4)`

C

`(n(pi^(2)-8))/(4)`

D

`(n(pi^(2)-2))/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( \int_{0}^{2n\pi} \max(\sin x, \sin^{-1}(\sin x)) \, dx \), we will analyze the functions involved and calculate the integral step by step. ### Step 1: Understand the Functions First, we need to understand the behavior of the functions \( \sin x \) and \( \sin^{-1}(\sin x) \). - The function \( \sin x \) oscillates between -1 and 1 with a period of \( 2\pi \). - The function \( \sin^{-1}(\sin x) \) is defined as follows: - For \( x \in [0, \pi] \), \( \sin^{-1}(\sin x) = x \). - For \( x \in [\pi, 2\pi] \), \( \sin^{-1}(\sin x) = 2\pi - x \). ### Step 2: Identify the Interval The integral is from \( 0 \) to \( 2n\pi \). We can break this into segments of \( [0, 2\pi] \) and then multiply the result by \( n \) since the functions are periodic with a period of \( 2\pi \). ### Step 3: Calculate the Integral from \( 0 \) to \( 2\pi \) We will evaluate the integral over one period \( [0, 2\pi] \): 1. **From \( 0 \) to \( \pi \)**: - Here, \( \max(\sin x, \sin^{-1}(\sin x)) = \max(\sin x, x) \). - The function \( \sin x \) starts at 0, reaches 1 at \( \frac{\pi}{2} \), and returns to 0 at \( \pi \). - The function \( x \) is a straight line from 0 to \( \pi \). - The intersection point occurs at \( x = \frac{\pi}{2} \) where both functions equal \( \frac{\pi}{2} \). - Thus, \( \max(\sin x, \sin^{-1}(\sin x)) = x \) for \( x \in [0, \frac{\pi}{2}] \) and \( \max(\sin x, \sin^{-1}(\sin x)) = \sin x \) for \( x \in [\frac{\pi}{2}, \pi] \). 2. **Calculate the integral**: \[ \int_{0}^{\pi} \max(\sin x, \sin^{-1}(\sin x)) \, dx = \int_{0}^{\frac{\pi}{2}} x \, dx + \int_{\frac{\pi}{2}}^{\pi} \sin x \, dx \] - For the first integral: \[ \int_{0}^{\frac{\pi}{2}} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{\frac{\pi}{2}} = \frac{(\frac{\pi}{2})^2}{2} = \frac{\pi^2}{8} \] - For the second integral: \[ \int_{\frac{\pi}{2}}^{\pi} \sin x \, dx = \left[-\cos x\right]_{\frac{\pi}{2}}^{\pi} = -\cos(\pi) - (-\cos(\frac{\pi}{2})) = 1 - 0 = 1 \] - Therefore, the total integral from \( 0 \) to \( \pi \) is: \[ \frac{\pi^2}{8} + 1 \] ### Step 4: Calculate the Integral from \( 0 \) to \( 2n\pi \) Since the integral is periodic with period \( 2\pi \): \[ \int_{0}^{2n\pi} \max(\sin x, \sin^{-1}(\sin x)) \, dx = n \left( \frac{\pi^2}{8} + 1 \right) \] ### Final Result Thus, the value of the definite integral is: \[ \int_{0}^{2n\pi} \max(\sin x, \sin^{-1}(\sin x)) \, dx = n \left( \frac{\pi^2}{8} + 1 \right) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral, int_0^(pi/2) (sin5x)/sinx dx is

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

Evaluate the definite integrals int_0^(pi/2)sin2xtan^(-1)(sinx)dx

The value of the definite integral I=int_(-1)^(1)ln((2-sin^(3)x)/(2+sin^(3)x))dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

Evaluate the definite integrals int_(pi/6)^(pi/3)(sinx+cosx)/(sqrt(sin2x))dx

Evaluate the definite integrals int_(0)^(pi//4)(sinx+cosx)/(25-16(sinx-cosx)^(2)) dx

Evaluate the definite integrals int_0^(pi/4)(sinx+cosx)/(9+16sin2x)dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The value of the definite integral int(0)^(2npi) max (sinx,sin^(-1)( s...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |