Home
Class 12
MATHS
lim(xrarr(pi)/(4)) (int(2)^(sec^(2)x)f(t...

`lim_(xrarr(pi)/(4)) (int_(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/(16))` is equal to

A

`(8)/(pi)f(2)`

B

`(2)/(pi)f(2)`

C

`(2)/(pi)f((1)/(2))`

D

`4f(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ L = \lim_{x \to \frac{\pi}{4}} \frac{\int_{2}^{\sec^2 x} f(t) \, dt}{x^2 - \frac{\pi^2}{16}}, \] we will apply L'Hôpital's rule since both the numerator and denominator approach 0 as \( x \to \frac{\pi}{4} \). ### Step 1: Check the limit of the numerator and denominator As \( x \to \frac{\pi}{4} \): - The upper limit of the integral, \( \sec^2\left(\frac{\pi}{4}\right) = 2 \). - Thus, the integral becomes \( \int_{2}^{2} f(t) \, dt = 0 \). - The denominator \( x^2 - \frac{\pi^2}{16} \) also approaches \( \left(\frac{\pi}{4}\right)^2 - \frac{\pi^2}{16} = 0 \). Since both the numerator and denominator approach 0, we can apply L'Hôpital's rule. ### Step 2: Differentiate the numerator and denominator Using L'Hôpital's rule, we differentiate the numerator and the denominator with respect to \( x \). **Numerator:** Using the Fundamental Theorem of Calculus and the chain rule: \[ \frac{d}{dx} \left( \int_{2}^{\sec^2 x} f(t) \, dt \right) = f(\sec^2 x) \cdot \frac{d}{dx}(\sec^2 x). \] The derivative of \( \sec^2 x \) is \( 2 \sec^2 x \tan x \). Thus, the derivative of the numerator is: \[ f(\sec^2 x) \cdot 2 \sec^2 x \tan x. \] **Denominator:** The derivative of \( x^2 - \frac{\pi^2}{16} \) is: \[ \frac{d}{dx}(x^2) = 2x. \] ### Step 3: Apply L'Hôpital's Rule Now we can rewrite the limit: \[ L = \lim_{x \to \frac{\pi}{4}} \frac{f(\sec^2 x) \cdot 2 \sec^2 x \tan x}{2x}. \] ### Step 4: Substitute \( x = \frac{\pi}{4} \) Now, we substitute \( x = \frac{\pi}{4} \): - \( \sec^2\left(\frac{\pi}{4}\right) = 2 \). - \( \tan\left(\frac{\pi}{4}\right) = 1 \). - \( 2x = 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} \). Thus, we have: \[ L = \frac{f(2) \cdot 2 \cdot 2 \cdot 1}{\frac{\pi}{2}} = \frac{4f(2)}{\frac{\pi}{2}} = \frac{8f(2)}{\pi}. \] ### Final Answer The limit is: \[ L = \frac{8f(2)}{\pi}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of lim _( x to (pi)/(4))(int_(2 ) ^(cosec ^(2)x)tg (t )dt)/(x ^(2)-(pi^(2))/(16)) is:

The value of lim _( x to (pi)/(4))(int_(2 ) ^(cosec ^(2)x)tg (t )dt)/(x ^(2)-(pi^(2))/(16)) is:

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

lim_(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

lim_(xrarr oo) (int_(0) ^(2x)xe^(x^(2))dx)/(e^(4x^2))

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

lim_(xrarr0) x^2sin.(pi)/(x) , is

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x+(5pi)/(4))) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. lim(xrarr(pi)/(4)) (int(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/(16)) is ...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |