Home
Class 12
MATHS
Let f(alpha, beta) =|(cos (alpha + beta)...

Let `f(alpha, beta) =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)|`
The value of `l=int_(0)^(pi//2)e^(beta)(f(0,0)+f((pi)/(2),beta)+f((3pi)/(2),(pi)/(2)-beta))dbeta` is

A

(a) `e^(pi//2)`

B

(b) 0

C

(c) `2(2e^(pi//2)-2)`

D

(d) None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ L = \int_{0}^{\frac{\pi}{2}} e^{\beta} \left( f(0, 0) + f\left(\frac{\pi}{2}, \beta\right) + f\left(\frac{3\pi}{2}, \frac{\pi}{2} - \beta\right) \right) d\beta \] where \[ f(\alpha, \beta) = \begin{vmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) & \cos(2\beta) \\ \sin(\alpha) & \cos(\alpha) & \sin(\beta) \\ -\cos(\alpha) & \sin(\alpha) & \cos(\beta) \end{vmatrix} \] ### Step 1: Calculate \( f(0, 0) \) Substituting \( \alpha = 0 \) and \( \beta = 0 \): \[ f(0, 0) = \begin{vmatrix} \cos(0) & -\sin(0) & \cos(0) \\ \sin(0) & \cos(0) & \sin(0) \\ -\cos(0) & \sin(0) & \cos(0) \end{vmatrix} \] This simplifies to: \[ f(0, 0) = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} \] Calculating the determinant: \[ = 1 \cdot \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} - 0 + 1 \cdot \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} = 1 \cdot 1 + 1 \cdot 1 = 2 \] Thus, \( f(0, 0) = 2 \). ### Step 2: Calculate \( f\left(\frac{\pi}{2}, \beta\right) \) Substituting \( \alpha = \frac{\pi}{2} \) and \( \beta \): \[ f\left(\frac{\pi}{2}, \beta\right) = \begin{vmatrix} \cos\left(\frac{\pi}{2} + \beta\right) & -\sin\left(\frac{\pi}{2} + \beta\right) & \cos(2\beta) \\ \sin\left(\frac{\pi}{2}\right) & \cos\left(\frac{\pi}{2}\right) & \sin(\beta) \\ -\cos\left(\frac{\pi}{2}\right) & \sin\left(\frac{\pi}{2}\right) & \cos(\beta) \end{vmatrix} \] This simplifies to: \[ = \begin{vmatrix} -\sin(\beta) & -\cos(\beta) & \cos(2\beta) \\ 1 & 0 & \sin(\beta) \\ 0 & 1 & \cos(\beta) \end{vmatrix} \] Calculating the determinant: \[ = -\sin(\beta) \begin{vmatrix} 0 & \sin(\beta) \\ 1 & \cos(\beta) \end{vmatrix} + \cos(\beta) \begin{vmatrix} 1 & \sin(\beta) \\ 0 & \cos(\beta) \end{vmatrix} \] \[ = -\sin(\beta)(0 - \sin(\beta)) + \cos(\beta)(\cos(\beta)) = \sin^2(\beta) + \cos^2(\beta) = 1 \] Thus, \( f\left(\frac{\pi}{2}, \beta\right) = 1 \). ### Step 3: Calculate \( f\left(\frac{3\pi}{2}, \frac{\pi}{2} - \beta\right) \) Substituting \( \alpha = \frac{3\pi}{2} \) and \( \beta = \frac{\pi}{2} - \beta \): \[ f\left(\frac{3\pi}{2}, \frac{\pi}{2} - \beta\right) = \begin{vmatrix} \cos\left(2\pi - \beta\right) & -\sin\left(2\pi - \beta\right) & \cos(\pi - 2\beta) \\ -1 & 0 & \sin\left(\frac{\pi}{2} - \beta\right) \\ 0 & -1 & \cos\left(\frac{\pi}{2} - \beta\right) \end{vmatrix} \] This simplifies to: \[ = \begin{vmatrix} \cos(\beta) & \sin(\beta) & -\cos(2\beta) \\ -1 & 0 & \cos(\beta) \\ 0 & -1 & \sin(\beta) \end{vmatrix} \] Calculating the determinant gives: \[ = \cos(\beta)(0 - \cos(\beta)) - \sin(\beta)(-1 \cdot \sin(\beta)) = -\cos^2(\beta) + \sin^2(\beta) = \sin^2(\beta) - \cos^2(\beta) = -\cos(2\beta) \] Thus, \( f\left(\frac{3\pi}{2}, \frac{\pi}{2} - \beta\right) = -\cos(2\beta) \). ### Step 4: Substitute back into the integral Now we substitute back into the integral: \[ L = \int_{0}^{\frac{\pi}{2}} e^{\beta} \left( 2 + 1 - \cos(2\beta) \right) d\beta \] This simplifies to: \[ L = \int_{0}^{\frac{\pi}{2}} e^{\beta} \left( 3 - \cos(2\beta) \right) d\beta \] ### Step 5: Evaluate the integral We can separate the integral: \[ L = 3 \int_{0}^{\frac{\pi}{2}} e^{\beta} d\beta - \int_{0}^{\frac{\pi}{2}} e^{\beta} \cos(2\beta) d\beta \] The first integral evaluates to: \[ 3 \left[ e^{\beta} \right]_{0}^{\frac{\pi}{2}} = 3 \left( e^{\frac{\pi}{2}} - 1 \right) \] For the second integral, we can use integration by parts or a known result: \[ \int e^{\beta} \cos(2\beta) d\beta = \frac{e^{\beta}}{5} (2 \cos(2\beta) + \sin(2\beta)) \] Evaluating this from \( 0 \) to \( \frac{\pi}{2} \): \[ = \left[ \frac{e^{\beta}}{5} (2 \cos(2\beta) + \sin(2\beta)) \right]_{0}^{\frac{\pi}{2}} = \frac{e^{\frac{\pi}{2}}}{5} (2 \cdot 0 + 1) - \frac{1}{5} (2 + 0) = \frac{e^{\frac{\pi}{2}}}{5} - \frac{2}{5} \] ### Final Result Combining these results gives: \[ L = 3 \left( e^{\frac{\pi}{2}} - 1 \right) - \left( \frac{e^{\frac{\pi}{2}}}{5} - \frac{2}{5} \right) \] Simplifying: \[ L = 3e^{\frac{\pi}{2}} - 3 - \frac{e^{\frac{\pi}{2}}}{5} + \frac{2}{5} \] Combining terms: \[ L = \left( 3 - \frac{1}{5} \right)e^{\frac{\pi}{2}} - 3 + \frac{2}{5} = \frac{14}{5} e^{\frac{\pi}{2}} - \frac{13}{5} \] Thus, the final answer is: \[ L = \frac{14}{5} e^{\frac{\pi}{2}} - \frac{13}{5} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f(alpha, beta) = =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)| if i =int_(-pi//2)^(pi//2) cos ^(2)beta(f(0,beta)+f(0,(pi)/(2)-beta))dbeta then i is

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

If cos(alpha+beta)=0 then sin(alpha+2beta)=

Evaluate : |{:( 0, sin alpha , - cos alpha ), ( - sin alpha , 0 , sin beta) , (cos alpha , -sin beta , 0):}|

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let f(alpha, beta) =|(cos (alpha + beta), -sin (alpha + beta), cos 2be...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |