Home
Class 12
MATHS
Let f(alpha, beta) = =|(cos (alpha + bet...

Let `f(alpha, beta) = =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)|`
`if i =int_(-pi//2)^(pi//2) cos ^(2)beta(f(0,beta)+f(0,(pi)/(2)-beta))dbeta` then i is

A

`e^(pi//2)`

B

3

C

`2(2e^(pi//2)-1)`

D

`None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral \[ i = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \beta \left( f(0, \beta) + f\left(0, \frac{\pi}{2} - \beta\right) \right) d\beta \] where \[ f(\alpha, \beta) = \begin{vmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) & \cos(2\beta) \\ \sin \alpha & \cos \alpha & \sin \beta \\ -\cos \alpha & \sin \alpha & \cos \beta \end{vmatrix} \] ### Step 1: Calculate \( f(0, \beta) \) Substituting \(\alpha = 0\): \[ f(0, \beta) = \begin{vmatrix} \cos \beta & -\sin \beta & \cos(2\beta) \\ 0 & 1 & \sin \beta \\ -1 & 0 & \cos \beta \end{vmatrix} \] ### Step 2: Evaluate the determinant Using the determinant formula, we can expand it: \[ f(0, \beta) = \cos \beta \begin{vmatrix} 1 & \sin \beta \\ 0 & \cos \beta \end{vmatrix} + \sin \beta \begin{vmatrix} 0 & \sin \beta \\ -1 & \cos \beta \end{vmatrix} + \cos(2\beta) \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} \] Calculating these determinants: 1. The first determinant is \( \cos \beta \cdot (1 \cdot \cos \beta - 0 \cdot \sin \beta) = \cos^2 \beta \). 2. The second determinant is \( \sin \beta \cdot (0 - (-1) \cdot \sin \beta) = \sin^2 \beta \). 3. The third determinant is \( \cos(2\beta) \cdot (0 - (-1)) = \cos(2\beta) \). Thus, \[ f(0, \beta) = \cos^2 \beta + \sin^2 \beta + \cos(2\beta) = 1 + \cos(2\beta) \] ### Step 3: Calculate \( f(0, \frac{\pi}{2} - \beta) \) Substituting \(\beta\) with \(\frac{\pi}{2} - \beta\): \[ f\left(0, \frac{\pi}{2} - \beta\right) = f(0, \beta) \text{ (since } \cos\left(\frac{\pi}{2} - \beta\right) = \sin \beta \text{ and vice versa)} \] Thus, \[ f\left(0, \frac{\pi}{2} - \beta\right) = 1 + \cos(2(\frac{\pi}{2} - \beta)) = 1 + \cos(\pi - 2\beta) = 1 - \cos(2\beta) \] ### Step 4: Combine \( f(0, \beta) \) and \( f(0, \frac{\pi}{2} - \beta) \) Now, we can combine the two results: \[ f(0, \beta) + f\left(0, \frac{\pi}{2} - \beta\right) = (1 + \cos(2\beta)) + (1 - \cos(2\beta)) = 2 \] ### Step 5: Substitute back into the integral Now substitute this back into the integral: \[ i = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \beta \cdot 2 \, d\beta = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \beta \, d\beta \] ### Step 6: Evaluate the integral \( \int \cos^2 \beta \, d\beta \) Using the identity \( \cos^2 \beta = \frac{1 + \cos(2\beta)}{2} \): \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \beta \, d\beta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \cos(2\beta)}{2} \, d\beta = \frac{1}{2} \left[ \beta + \frac{1}{2} \sin(2\beta) \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \] Calculating the limits: \[ \left[ \frac{\pi}{2} + 0 \right] - \left[ -\frac{\pi}{2} + 0 \right] = \pi \] Thus, \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \beta \, d\beta = \frac{\pi}{2} \] ### Step 7: Final calculation of \( i \) Now substituting back: \[ i = 2 \cdot \frac{\pi}{2} = \pi \] ### Final Answer Thus, the value of \( i \) is \[ \boxed{\pi} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f(alpha, beta) =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)| The value of l=int_(0)^(pi//2)e^(beta)(f(0,0)+f((pi)/(2),beta)+f((3pi)/(2),(pi)/(2)-beta))dbeta is

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

If cos(alpha+beta)=0 then sin(alpha+2beta)=

|[1,cos(alpha-beta), cos alpha] , [cos(alpha-beta),1,cos beta] , [cos alpha, cos beta, 1]|

Evaluate : |{:( 0, sin alpha , - cos alpha ), ( - sin alpha , 0 , sin beta) , (cos alpha , -sin beta , 0):}|

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let f(alpha, beta) = =|(cos (alpha + beta), -sin (alpha + beta), cos 2...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |