Home
Class 12
MATHS
Find the error in steps to evaluate the ...

Find the error in steps to evaluate the following integral `int_(0)^(pi)(dx)/(1+2 sin ^(2) x )=int _(0)^(pi)(sec^(2)xdx)/(sec^(2)x+2 tan^(2)x)=int_(0)^(pi) (sec^(2)xdx)/(1+3 tan^(2)x)`
`=(1)/(sqrt3)[tan^(-1)(sqrt3 tan x)]_(0)^(pi)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\pi} \frac{dx}{1 + 2 \sin^2 x} \] we will go through the steps carefully and identify any errors in the provided solution. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_{0}^{\pi} \frac{dx}{1 + 2 \sin^2 x} \] Using the identity \(\sin^2 x = \frac{1 - \cos(2x)}{2}\), we can rewrite the integral: \[ I = \int_{0}^{\pi} \frac{dx}{1 + 2 \cdot \frac{1 - \cos(2x)}{2}} = \int_{0}^{\pi} \frac{dx}{2 - \cos(2x)} \] ### Step 2: Use a Trigonometric Substitution Next, we can use the substitution \(t = \tan x\). Then, \(dx = \frac{dt}{1 + t^2}\) and the limits change from \(x = 0\) to \(x = \pi\) which corresponds to \(t = 0\) to \(t = \infty\). Substituting into the integral gives: \[ I = \int_{0}^{\infty} \frac{dt}{(2 - \cos(2 \tan^{-1} t))(1 + t^2)} \] ### Step 3: Simplify the Integral Using the identity \(\cos(2 \tan^{-1} t) = \frac{1 - t^2}{1 + t^2}\), we can rewrite the integral: \[ I = \int_{0}^{\infty} \frac{dt}{2 - \frac{1 - t^2}{1 + t^2}} \cdot \frac{1}{1 + t^2} \] This simplifies to: \[ I = \int_{0}^{\infty} \frac{(1 + t^2) dt}{2(1 + t^2) - (1 - t^2)} = \int_{0}^{\infty} \frac{(1 + t^2) dt}{3 + t^2} \] ### Step 4: Evaluate the Integral Now we can evaluate the integral: \[ I = \int_{0}^{\infty} \frac{(1 + t^2) dt}{3 + t^2} = \int_{0}^{\infty} \frac{dt}{3 + t^2} + \int_{0}^{\infty} \frac{t^2 dt}{3 + t^2} \] The first integral can be evaluated using the formula \(\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right)\): \[ \int_{0}^{\infty} \frac{dt}{3 + t^2} = \frac{1}{\sqrt{3}} \cdot \frac{\pi}{2} = \frac{\pi}{2\sqrt{3}} \] The second integral can be evaluated by using integration by parts or recognizing it as a standard integral: \[ \int_{0}^{\infty} \frac{t^2 dt}{3 + t^2} = \frac{1}{2} \int_{0}^{\infty} \frac{d(3 + t^2)}{3 + t^2} = \frac{1}{2} \cdot \frac{\pi}{\sqrt{3}} = \frac{\pi}{6} \] ### Final Step: Combine Results Thus, we have: \[ I = \frac{\pi}{2\sqrt{3}} + \frac{\pi}{6} \] Combining these gives us: \[ I = \frac{3\pi + \pi}{6\sqrt{3}} = \frac{4\pi}{6\sqrt{3}} = \frac{2\pi}{3\sqrt{3}} \] ### Conclusion The error in the original steps was in the evaluation of the limits and the final integration. The final result is not zero, but rather: \[ I = \frac{2\pi}{3\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)sec^(2)xdx

int_(0)^( pi/4)sec^(2)xdx

I=int_(0)^( pi)*sec^(2)xdx

int_(0)^( pi/2)x sec^(2)xdx

int_(0)^( pi/4)x*sec^(2)xdx=

int_(0)^( pi/4)x*sec^(2)xdx=

Evaluate the following integral: int_0^(pi//2)(cos^2x)/(1+3sin^2x)dx

Evaluate the following integral : int_0^(2pi)sqrt(1+sin(x/2))dx

Evaluate the following integral: int_0^(pi//4)(tan^3x)/(1+cos2x)dx

Evaluate the following integral: int_0^(pi//2)1/(1+tan^3x)dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Find the error in steps to evaluate the following integral int(0)^(pi)...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |