Home
Class 12
MATHS
Evaluate: intsqrt((3a^2+b^2)/2)^sqrt((a^...

Evaluate: `int_sqrt((3a^2+b^2)/2)^sqrt((a^2+b^2)/2) (x*dx)/(sqrt((x^2-a^2)(b^2-x^2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{\sqrt{\frac{3a^2 + b^2}{2}}}^{\sqrt{\frac{a^2 + b^2}{2}}} \frac{x \, dx}{\sqrt{(x^2 - a^2)(b^2 - x^2)}} \] we will use a substitution method to simplify the integral. ### Step 1: Substitution Let \( t^2 = b^2 - x^2 \). Then, differentiating both sides gives: \[ -2x \, dx = 2t \, dt \implies x \, dx = -t \, dt \] ### Step 2: Change of Limits When \( x = \sqrt{\frac{3a^2 + b^2}{2}} \): \[ t^2 = b^2 - \left(\frac{3a^2 + b^2}{2}\right) = \frac{2b^2 - 3a^2 - b^2}{2} = \frac{b^2 - 3a^2}{2} \implies t = \sqrt{\frac{b^2 - 3a^2}{2}} \] When \( x = \sqrt{\frac{a^2 + b^2}{2}} \): \[ t^2 = b^2 - \left(\frac{a^2 + b^2}{2}\right) = \frac{2b^2 - a^2 - b^2}{2} = \frac{b^2 - a^2}{2} \implies t = \sqrt{\frac{b^2 - a^2}{2}} \] ### Step 3: Rewrite the Integral Now substituting \( x \, dx \) and changing the limits, we have: \[ I = -\int_{\sqrt{\frac{b^2 - 3a^2}{2}}}^{\sqrt{\frac{b^2 - a^2}{2}}} \frac{t \, dt}{\sqrt{(b^2 - t^2 - a^2)(t^2)}} \] ### Step 4: Simplifying the Integral The term \( b^2 - t^2 - a^2 \) can be rewritten as: \[ b^2 - t^2 - a^2 = b^2 - a^2 - t^2 \] Thus, the integral becomes: \[ I = -\int_{\sqrt{\frac{b^2 - 3a^2}{2}}}^{\sqrt{\frac{b^2 - a^2}{2}}} \frac{t \, dt}{\sqrt{(b^2 - a^2 - t^2)(t^2)}} \] ### Step 5: Recognizing the Integral Form We recognize that the integral \[ \int \frac{dt}{\sqrt{(A^2 - t^2)(t^2)}} \] has a known solution, which is related to the inverse sine function. ### Step 6: Evaluating the Integral Using the known integral result: \[ \int \frac{dt}{\sqrt{(A^2 - t^2)(t^2)}} = \sin^{-1}\left(\frac{t}{A}\right) + C \] we can evaluate our integral: \[ I = -\left[\sin^{-1}\left(\frac{t}{\sqrt{b^2 - a^2}}\right)\right]_{\sqrt{\frac{b^2 - 3a^2}{2}}}^{\sqrt{\frac{b^2 - a^2}{2}}} \] ### Step 7: Substituting Limits Substituting the limits into the inverse sine function gives: \[ I = -\left(\sin^{-1}\left(\frac{\sqrt{\frac{b^2 - a^2}{2}}}{\sqrt{b^2 - a^2}}\right) - \sin^{-1}\left(\frac{\sqrt{\frac{b^2 - 3a^2}{2}}}{\sqrt{b^2 - a^2}}\right)\right) \] ### Step 8: Final Result This simplifies to: \[ I = -\left(\frac{\pi}{4} - \sin^{-1}\left(\frac{\sqrt{\frac{b^2 - 3a^2}{2}}}{\sqrt{b^2 - a^2}}\right)\right) \] Thus, the final answer is: \[ I = \sin^{-1}\left(\frac{\sqrt{\frac{b^2 - 3a^2}{2}}}{\sqrt{b^2 - a^2}}\right) - \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(sqrt(a^2-b^2x^2))dx

Evaluate: int(dx)/(sqrt(2a x-x^2))

Evaluate: int1/(sqrt(2x-x^2))\ dx

Evaluate: int1/(sqrt(3-2x-x^2))\ dx

Evaluate: int1/(x^3sqrt(x^2-a^2))dx

Evaluate: int(x+1)sqrt(2x^2+3)dx

Evaluate: int(x+1)sqrt(2x^2+3)dx

Evaluate int sqrt(x^(2)+2x+5)dx

Evaluate: int1/(sqrt(5x^2-2x))\ dx

Evaluate: int(x-1)sqrt (x^2-2x)dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate: intsqrt((3a^2+b^2)/2)^sqrt((a^2+b^2)/2) (x*dx)/(sqrt((x^2-a^...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |