Home
Class 12
MATHS
Evaluate int(0)^(pi//4)(e^(secx)[sin(x+(...

Evaluate `int_(0)^(pi//4)(e^(secx)[sin(x+(pi)/(4))])/(cosx(1-sin x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{4}} \frac{e^{\sec x} \sin\left(x + \frac{\pi}{4}\right)}{\cos x (1 - \sin x)} \, dx, \] we will follow a systematic approach. ### Step 1: Rewrite the sine term Using the sine addition formula, we have: \[ \sin\left(x + \frac{\pi}{4}\right) = \sin x \cos\frac{\pi}{4} + \cos x \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x. \] Substituting this back into the integral gives: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{e^{\sec x} \left(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x\right)}{\cos x (1 - \sin x)} \, dx. \] ### Step 2: Factor out constants Factoring out \(\frac{1}{\sqrt{2}}\): \[ I = \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{4}} \frac{e^{\sec x} \left(\sin x + \cos x\right)}{\cos x (1 - \sin x)} \, dx. \] ### Step 3: Simplify the denominator We can rewrite \(1 - \sin x\) in the denominator: \[ 1 - \sin x = \cos^2 x / (1 + \sin x). \] Thus, the integral becomes: \[ I = \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{4}} \frac{e^{\sec x} (\sin x + \cos x)(1 + \sin x)}{\cos^2 x} \, dx. \] ### Step 4: Split the integral Now, we can separate the terms in the numerator: \[ I = \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{4}} e^{\sec x} \left(\frac{\sin x + \cos x + \sin^2 x + \sin x \cos x}{\cos^2 x}\right) \, dx. \] ### Step 5: Change of variables Let us denote: \[ I_1 = \int_{0}^{\frac{\pi}{4}} e^{\sec x} \sec^2 x \, dx, \] \[ I_2 = \int_{0}^{\frac{\pi}{4}} e^{\sec x} \sec x \tan x \, dx. \] ### Step 6: Integration by parts Using integration by parts on \(I_1\) and \(I_2\): 1. For \(I_1\), let \(u = e^{\sec x}\) and \(dv = \sec^2 x \, dx\). 2. For \(I_2\), let \(u = e^{\sec x}\) and \(dv = \sec x \tan x \, dx\). ### Step 7: Evaluate the limits Evaluating these integrals from \(0\) to \(\frac{\pi}{4}\): - At \(x = 0\), \(e^{\sec(0)} = e^1 = e\). - At \(x = \frac{\pi}{4}\), \(e^{\sec(\frac{\pi}{4})} = e^{\sqrt{2}}\). ### Step 8: Combine results Combine the results from \(I_1\) and \(I_2\) and substitute back into the expression for \(I\). ### Final Result After evaluating and simplifying, we find: \[ I = \frac{1}{\sqrt{2}} \left( \text{evaluated terms} \right). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^(pi) e^(2x) sin ((pi)/(4) + x)dx

Evaluate: int_0^(pi/4) secx/(1+2sin^2x)dx

int_(0)^( pi/4)(dx)/(1+sin x)

int_(0)^( pi/4)(dx)/(1-sin x)

Evaluate : int _(0)^(pi//4) sin 2x sin 3 x dx

Evaluate : int_(0)^(pi//6) (cosx)/(3+4 sin x)dx

Evaluate int_(0)^(pi)sin^(3)x*cos^(4)xdx

int_(0)^(pi/4) sin 2x dx

Evaluate: int_(-pi//4)^(pi//4)(sec^2x)/(1+e^x)dx

Evaluate: int_(-pi//4)^(pi//4)(sec^2x)/(1+e^x)dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Evaluate int(0)^(pi//4)(e^(secx)[sin(x+(pi)/(4))])/(cosx(1-sin x))dx

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |