Home
Class 12
MATHS
int0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x...

`int_0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x)cos^2x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\frac{\pi}{4}} \frac{x^2 (\sin 2x - \cos 2x)}{(1 + \sin 2x) \cos^2 x} \, dx, \] we will use the substitution \(2x = t\). This implies \(dx = \frac{dt}{2}\). When \(x = 0\), \(t = 0\) and when \(x = \frac{\pi}{4}\), \(t = \frac{\pi}{2}\). ### Step 1: Change of Variable Substituting \(2x = t\) gives us: \[ I = \int_0^{\frac{\pi}{2}} \frac{\left(\frac{t^2}{4}\right) \left(\sin t - \cos t\right)}{(1 + \sin t) \cos^2\left(\frac{t}{2}\right)} \cdot \frac{dt}{2}. \] ### Step 2: Simplifying the Integral This simplifies to: \[ I = \frac{1}{8} \int_0^{\frac{\pi}{2}} \frac{t^2 (\sin t - \cos t)}{(1 + \sin t) \cos^2\left(\frac{t}{2}\right)} \, dt. \] ### Step 3: Expressing \(\cos^2\left(\frac{t}{2}\right)\) Using the identity \(\cos t = 2 \cos^2\left(\frac{t}{2}\right) - 1\), we can express \(\cos^2\left(\frac{t}{2}\right)\) in terms of \(t\): \[ \cos^2\left(\frac{t}{2}\right) = \frac{1 + \cos t}{2}. \] ### Step 4: Substitute Back Substituting this back into the integral gives: \[ I = \frac{1}{8} \int_0^{\frac{\pi}{2}} \frac{t^2 (\sin t - \cos t)}{(1 + \sin t) \cdot \frac{1 + \cos t}{2}} \, dt. \] This simplifies to: \[ I = \frac{1}{4} \int_0^{\frac{\pi}{2}} \frac{t^2 (\sin t - \cos t)}{(1 + \sin t)(1 + \cos t)} \, dt. \] ### Step 5: Symmetry in the Integral We can use the property of definite integrals: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx. \] Let \(J = \int_0^{\frac{\pi}{2}} \frac{(\frac{\pi}{2} - t)^2 (\sin t - \cos t)}{(1 + \sin t)(1 + \cos t)} \, dt\). ### Step 6: Adding the Two Integrals Adding \(I\) and \(J\): \[ 2I = \frac{1}{4} \int_0^{\frac{\pi}{2}} \frac{(\frac{\pi}{2})^2 (\sin t - \cos t)}{(1 + \sin t)(1 + \cos t)} \, dt. \] ### Step 7: Evaluating the Integral Now we can evaluate the integral: \[ \int_0^{\frac{\pi}{2}} \frac{(\frac{\pi}{2})^2 (\sin t - \cos t)}{(1 + \sin t)(1 + \cos t)} \, dt. \] ### Step 8: Final Calculation After evaluating the integral, we can find \(I\): \[ I = \frac{\pi^2}{16} - \frac{\pi}{4} \ln 2. \] ### Conclusion Thus, the value of the integral is: \[ \boxed{I = \frac{\pi^2}{16} - \frac{\pi}{4} \ln 2}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int_0^(pi//4)(sin^2xcos^2x)/((sin^3x+cos^3x)^2)dx

Evaluate : int_(0)^(pi/2)(sin^2x-cos^2x)/(sin^3x+cos^3x)dx

Evaluate: int_0^(pi//2)(xsinx cos\ x)/(sin^4x+cos^4x)dx

int(sin2x)/(cos2x)dx

int(1+sin2x)/(cos^2x)dx

int_(0)^(pi/4)(sin x+cos x)/(9+16 sin 2x)dx

The value of I=int_(0)^(pi//2)((sinx+cos)^(2))/(sqrt(1+sin2x))dx is

Evaluate the following integral: int_0^(pi//2)(sin x cos x)/(cos^2x+3cos x+2)dx

int(sin2x)/(cos x)*dx

int_(0)^(pi//2) x sin x cos x dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. int0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x)cos^2x)dx

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |