Home
Class 12
MATHS
Compute the following integrals. (i) ...

Compute the following integrals.
(i) `int_(0)^(infty)f(x^(n)+x^(-n))lnx (dx)/(x)=0`
(ii) `int_(0)^(infty)f(x^(n)+x^(-n))lnx (dx)/(1+x^(2))=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integrals, we will use a substitution method. Let's break down the solution step by step. ### Part (i) We need to compute the integral: \[ I = \int_{0}^{\infty} f(x^n + x^{-n}) \frac{\ln x}{x} \, dx \] **Step 1: Substitution** Let \( x = \frac{1}{t} \). Then, \( dx = -\frac{dt}{t^2} \). The limits change as follows: - When \( x \to 0 \), \( t \to \infty \) - When \( x \to \infty \), \( t \to 0 \) Thus, the integral becomes: \[ I = \int_{\infty}^{0} f\left(\left(\frac{1}{t}\right)^n + \left(\frac{1}{t}\right)^{-n}\right) \frac{\ln\left(\frac{1}{t}\right)}{\frac{1}{t}} \left(-\frac{dt}{t^2}\right) \] **Step 2: Simplifying the Integral** Rearranging the integral: \[ I = \int_{0}^{\infty} f\left(\frac{1}{t^n} + t^n\right) \frac{-\ln t}{t} dt \] Using the property \( \ln\left(\frac{1}{t}\right) = -\ln t \), we can write: \[ I = \int_{0}^{\infty} f\left(t^{-n} + t^n\right) \frac{\ln t}{t} dt \] **Step 3: Combining Integrals** Now we have: \[ I = -\int_{0}^{\infty} f\left(t^{-n} + t^n\right) \frac{\ln t}{t} dt \] Let’s denote this new integral as \( I \) again. Thus, we have: \[ I = -I \] **Step 4: Solving for \( I \)** Adding \( I \) to both sides: \[ 2I = 0 \implies I = 0 \] ### Conclusion for Part (i) The value of the integral is: \[ \int_{0}^{\infty} f(x^n + x^{-n}) \frac{\ln x}{x} \, dx = 0 \] --- ### Part (ii) Now we compute the second integral: \[ J = \int_{0}^{\infty} f(x^n + x^{-n}) \frac{\ln x}{1 + x^2} \, dx \] **Step 1: Substitution** Again, let \( x = \frac{1}{t} \). Then, \( dx = -\frac{dt}{t^2} \) and the limits change as before: \[ J = \int_{\infty}^{0} f\left(\left(\frac{1}{t}\right)^n + \left(\frac{1}{t}\right)^{-n}\right) \frac{\ln\left(\frac{1}{t}\right)}{1 + \left(\frac{1}{t}\right)^2} \left(-\frac{dt}{t^2}\right) \] **Step 2: Simplifying the Integral** Rearranging gives: \[ J = \int_{0}^{\infty} f\left(t^{-n} + t^n\right) \frac{-\ln t}{1 + \frac{1}{t^2}} \frac{dt}{t^2} \] This simplifies to: \[ J = \int_{0}^{\infty} f\left(t^{-n} + t^n\right) \frac{\ln t}{1 + t^2} dt \] **Step 3: Combining Integrals** Now we have: \[ J = -\int_{0}^{\infty} f\left(t^{-n} + t^n\right) \frac{\ln t}{1 + t^2} dt \] Let’s denote this new integral as \( J \) again. Thus, we have: \[ J = -J \] **Step 4: Solving for \( J \)** Adding \( J \) to both sides: \[ 2J = 0 \implies J = 0 \] ### Conclusion for Part (ii) The value of the integral is: \[ \int_{0}^{\infty} f(x^n + x^{-n}) \frac{\ln x}{1 + x^2} \, dx = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

Evaluate the following integrals: (1-35) int_0^(pi//2)(sin^n x)/(sin^n+cos^n x)dx

Evaluate the following integrals: int_0^(pi//2)(sin^n x)/(sin^n x+cos^n x)dx

Evaluate int_(0)^(infty) e^(-x)x^(3)dx .

Compute the integrals: int_0^oof(x^n+x^(-n))logx(dx)/(1+x^2)

Compute the integrals: int_0^oof(x^n+x^(-n))logx(dx)/(1+x^2)

Show that (a) int_(0)^(infty) sin x dx=1 (b) int_(0)^(infty) cosx dx=0

Compute the integrals: int_0^oof(x^n+x^(-n))logx(dx)/x

Evaluate : (i) int_(0)^(1)sin^(-1)xdx , (ii) int_(1)^(2)(lnx)/(x^(2))dx , (iii) int_(0)^(1)x^(2)sin^(-1)xdx .

The value of the definite integral int _(0)^(infty) (dx)/((1+x^(a))(1 + x^(2))) (a gt 0) is

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Compute the following integrals. (i) int(0)^(infty)f(x^(n)+x^(-n))l...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |