Home
Class 12
MATHS
Find a function g:RrarrR, continuous in ...

Find a function `g:RrarrR`, continuous in `[0,oo)` and positive in `(0,oo)` satisfying `g(1)=1` and `1/2int_0^xg^2(t)dt=1/x(int_0^xg(t)dt)^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a function \( g: \mathbb{R} \to \mathbb{R} \) that is continuous on \([0, \infty)\), positive on \((0, \infty)\), satisfies \( g(1) = 1 \), and fulfills the equation: \[ \frac{1}{2} \int_0^x g^2(t) \, dt = \frac{1}{x} \left( \int_0^x g(t) \, dt \right)^2 \] ### Step 1: Define the Function Let \( F(x) = \int_0^x g(t) \, dt \). Then, by the Fundamental Theorem of Calculus, we have: \[ F'(x) = g(x) \] ### Step 2: Substitute \( F(x) \) into the Given Equation Substituting \( F(x) \) into the equation, we rewrite it as: \[ \frac{1}{2} \int_0^x (F'(t))^2 \, dt = \frac{1}{x} (F(x))^2 \] ### Step 3: Differentiate Both Sides Differentiating both sides with respect to \( x \): Using the Leibniz rule on the left side: \[ \frac{1}{2} (F'(x))^2 = \frac{d}{dx} \left( \frac{1}{x} (F(x))^2 \right) \] Using the product rule on the right side: \[ \frac{d}{dx} \left( \frac{1}{x} (F(x))^2 \right) = -\frac{1}{x^2} (F(x))^2 + \frac{2 F(x) F'(x)}{x} \] ### Step 4: Set the Derivatives Equal Setting the derivatives equal gives us: \[ \frac{1}{2} (F'(x))^2 = -\frac{1}{x^2} (F(x))^2 + \frac{2 F(x) F'(x)}{x} \] ### Step 5: Rearranging the Equation Rearranging the equation, we have: \[ \frac{1}{2} (F'(x))^2 - \frac{2 F(x) F'(x)}{x} + \frac{1}{x^2} (F(x))^2 = 0 \] ### Step 6: Recognizing the Quadratic Form This is a quadratic equation in \( F'(x) \): \[ \frac{1}{2} (F'(x))^2 - \frac{2 F(x)}{x} F'(x) + \frac{1}{x^2} (F(x))^2 = 0 \] ### Step 7: Solving the Quadratic Equation Using the quadratic formula \( F'(x) = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = \frac{1}{2}, b = -\frac{2 F(x)}{x}, c = \frac{1}{x^2} (F(x))^2 \). Calculating the discriminant: \[ b^2 - 4ac = \left(-\frac{2 F(x)}{x}\right)^2 - 4 \cdot \frac{1}{2} \cdot \frac{1}{x^2} (F(x))^2 = \frac{4 F(x)^2}{x^2} - \frac{2 F(x)^2}{x^2} = \frac{2 F(x)^2}{x^2} \] Thus, we have: \[ F'(x) = \frac{2 F(x)}{x} \pm \sqrt{\frac{2 F(x)^2}{x^2}} = \frac{2 F(x)}{x} \pm \frac{\sqrt{2} F(x)}{x} \] ### Step 8: Simplifying the Expression This gives us two potential solutions: 1. \( F'(x) = \frac{(2 + \sqrt{2}) F(x)}{x} \) 2. \( F'(x) = \frac{(2 - \sqrt{2}) F(x)}{x} \) ### Step 9: Solving the Differential Equation Solving the first differential equation: \[ \frac{F'(x)}{F(x)} = \frac{(2 + \sqrt{2})}{x} \] Integrating both sides: \[ \ln |F(x)| = (2 + \sqrt{2}) \ln |x| + C \] Thus, \[ F(x) = C x^{2 + \sqrt{2}} \] ### Step 10: Finding \( g(x) \) Since \( g(x) = F'(x) \): \[ g(x) = C (2 + \sqrt{2}) x^{1 + \sqrt{2}} \] ### Step 11: Applying the Condition \( g(1) = 1 \) To satisfy \( g(1) = 1 \): \[ C (2 + \sqrt{2}) = 1 \implies C = \frac{1}{2 + \sqrt{2}} \] ### Final Function Thus, the function \( g(x) \) is: \[ g(x) = \frac{1}{2 + \sqrt{2}} (2 + \sqrt{2}) x^{1 + \sqrt{2}} = x^{1 + \sqrt{2}} \] ### Conclusion The function \( g(x) = x^{1 + \sqrt{2}} \) is continuous on \([0, \infty)\) and positive on \((0, \infty)\), satisfying \( g(1) = 1 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If g(x) is continuous function in [0, oo) satisfying g(1) = 1. If int_(0)^(x) 2x . g^(2)(t)dt = (int_(0)^(x) 2g(x - t)dt)^(2) , find g(x).

Given a function g, continous everywhere such that g (1)=5 and int _(0)^(1) g (t) dt =2. If f (x) =1/2 int _(0) ^(x) (x -t)^(2) g (t) dt, then find the value of f '(1)+f''(1).

Let a function f: [0,5] rarr R be continuous , f(1) =3 and F be definded as : F(x)=int_(1)^(x)t^2 g(t)dt, where g(t) = int_(1)^(t)f(u)du. Then for the function F, the point x=1 is

Given a function 'g' continous everywhere such that int _(0) ^(1) g (t ) dt =2 and g (1)=5. If f (x ) =1/2 int _(0) ^(x) (x-t) ^(2)g (t)dt, then the vlaue of f'''(1)-f''(1) is:

Given a function 'g' continous everywhere such that int _(0) ^(1) g (t ) dt =2 and g (1)=5. If f (x ) =1/2 int _(0) ^(x) (x-t) ^(2)g (t)dt, then the vlaue of f''(1)-f'(1) is:

Find the number of values of x satisfying int_(0)^(x)t^(2)sin (x-t)dt=x^(2) in [0, 100] .

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

Let f(x) be a continuous function which takes positive values for xge0 and satisfy int_(0)^(x)f(t)dt=x sqrt(f(x)) with f(1)=1/2 . Then

If f:R in R is continuous and differentiable function such that int_(-1)^(x) f(t)dt+f'''(3) int_(x)^(0) dt=int_(1)^(x) t^(3)dt-f'(1)int_(0)^(x) t^(2)dt+f'(2) int_(x)^(3) r dt , then the value of f'(4), is

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Find a function g:RrarrR, continuous in [0,oo) and positive in (0,oo) ...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |