Home
Class 12
MATHS
If f (x) =e^(x)+ int(0)^(1) (e^(x)+te^(-...

If `f (x) =e^(x)+ int_(0)^(1) (e^(x)+te^(-x))f (t) dt,` find `f(x)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow a systematic approach to find the function \( f(x) \). ### Step 1: Write the given equation We start with the given equation: \[ f(x) = e^x + \int_0^1 (e^x + t e^{-x}) f(t) \, dt \] ### Step 2: Simplify the integral We can rewrite the integral: \[ f(x) = e^x + \int_0^1 e^x f(t) \, dt + \int_0^1 t e^{-x} f(t) \, dt \] Let \( k = \int_0^1 f(t) \, dt \). Then we can express the equation as: \[ f(x) = e^x + e^x k + e^{-x} \int_0^1 t f(t) \, dt \] ### Step 3: Define the integral involving \( f(t) \) Let \( I = \int_0^1 t f(t) \, dt \). Then we can rewrite our equation: \[ f(x) = e^x (1 + k) + e^{-x} I \] ### Step 4: Evaluate \( k \) and \( I \) Now, we need to find \( k \) and \( I \). We can substitute \( f(t) \) back into the integral to find \( k \): \[ k = \int_0^1 f(t) \, dt = \int_0^1 \left( e^t + e^t k + e^{-t} I \right) dt \] This gives: \[ k = \int_0^1 e^t \, dt + k \int_0^1 e^t \, dt + I \int_0^1 t \, dt \] ### Step 5: Calculate the integrals Calculating the integrals: \[ \int_0^1 e^t \, dt = e - 1 \] \[ \int_0^1 t \, dt = \frac{1}{2} \] Substituting these values back, we have: \[ k = (e - 1) + k(e - 1) + \frac{I}{2} \] ### Step 6: Rearranging the equation for \( k \) Rearranging gives: \[ k - k(e - 1) = e - 1 + \frac{I}{2} \] Factoring out \( k \): \[ k(1 - (e - 1)) = e - 1 + \frac{I}{2} \] Thus, \[ k(2 - e) = e - 1 + \frac{I}{2} \] ### Step 7: Solve for \( I \) Now we also need to express \( I \) in terms of \( k \): \[ I = \int_0^1 t f(t) \, dt = \int_0^1 t \left( e^t + e^t k + e^{-t} I \right) dt \] Calculating the integral: \[ I = \int_0^1 t e^t \, dt + k \int_0^1 t e^t \, dt + I \int_0^1 t e^{-t} \, dt \] Using integration by parts for \( \int_0^1 t e^t \, dt \) and \( \int_0^1 t e^{-t} \, dt \): \[ \int_0^1 t e^t \, dt = e - 2 \] \[ \int_0^1 t e^{-t} \, dt = 1 - e^{-1} \] Substituting these back gives us: \[ I = (e - 2) + k(e - 2) + I(1 - e^{-1}) \] ### Step 8: Rearranging for \( I \) Rearranging gives: \[ I(1 - (1 - e^{-1})) = (e - 2) + k(e - 2) \] Thus, \[ I e^{-1} = (e - 2) + k(e - 2) \] So, \[ I = e(e - 2 + k(e - 2)) \] ### Step 9: Substitute back to find \( f(x) \) Now substitute \( k \) and \( I \) back into the original function \( f(x) \): \[ f(x) = e^x (1 + k) + e^{-x} I \] ### Final Step: Solve for \( f(x) \) After substituting and simplifying, we arrive at: \[ f(x) = \frac{e^x}{2 - e} \] Thus, the final answer is: \[ \boxed{f(x) = \frac{e^x}{2 - e}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Find f(x) if it satisfies the relation f(x) = e^(x) + int_(0)^(1) (x+ye^(x))f(y) dy .

Let f (x) =(1)/(x ^(2)) int _(4)^(x) (4t ^(2) -2 f '(t) dt, find 9f'(4)

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

If f(x) = int_(x)^(x^(2)) t^(2)lnt then find f'(e)

If F(x) = int_(x^(2))^(x^(3))(1)/(lnt) dt then find F'(e )

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f(x)=(e^(x)+1)/(e^(x)-1) and int_(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1) dx= alpha "Then" , int_(-1)^(1) t^(3) f(t) dt is equal to

f (x) = int _(0) ^(x) e ^(t ^(3)) (t ^(2) -1) (t+1) ^(2011) dt (x gt 0) then :

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If f (x) =e^(x)+ int(0)^(1) (e^(x)+te^(-x))f (t) dt, find f(x).

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |