Home
Class 12
MATHS
If|a|lt 1, show that int (0)^(pi)(log(1+...

`If|a|lt 1,` show that `int _(0)^(pi)(log(1+a cos x ))/( cos x)dx =pi sin^(-1) a `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I(a) = \int_0^\pi \frac{\log(1 + a \cos x)}{\cos x} \, dx \] where \(|a| < 1\), we will differentiate \(I(a)\) with respect to \(a\) and then integrate back to find \(I(a)\). ### Step 1: Differentiate \(I(a)\) with respect to \(a\) Using Leibniz's rule for differentiation under the integral sign, we have: \[ I'(a) = \int_0^\pi \frac{\partial}{\partial a} \left( \frac{\log(1 + a \cos x)}{\cos x} \right) dx \] Calculating the partial derivative: \[ \frac{\partial}{\partial a} \left( \log(1 + a \cos x) \right) = \frac{\cos x}{1 + a \cos x} \] Thus, we can write: \[ I'(a) = \int_0^\pi \frac{\cos x}{1 + a \cos x} \cdot \frac{1}{\cos x} \, dx = \int_0^\pi \frac{1}{1 + a \cos x} \, dx \] ### Step 2: Evaluate the integral \( \int_0^\pi \frac{1}{1 + a \cos x} \, dx \) This integral can be evaluated using the known result: \[ \int_0^\pi \frac{1}{1 + a \cos x} \, dx = \frac{\pi}{\sqrt{1 - a^2}} \quad \text{for } |a| < 1 \] Thus, we have: \[ I'(a) = \frac{\pi}{\sqrt{1 - a^2}} \] ### Step 3: Integrate \(I'(a)\) to find \(I(a)\) Now, we integrate \(I'(a)\) with respect to \(a\): \[ I(a) = \int I'(a) \, da = \int \frac{\pi}{\sqrt{1 - a^2}} \, da \] The integral of \(\frac{1}{\sqrt{1 - a^2}}\) is: \[ \int \frac{1}{\sqrt{1 - a^2}} \, da = \sin^{-1}(a) + C \] Thus, we have: \[ I(a) = \pi \sin^{-1}(a) + C \] ### Step 4: Determine the constant \(C\) To find the constant \(C\), we can evaluate \(I(0)\): \[ I(0) = \int_0^\pi \frac{\log(1 + 0 \cdot \cos x)}{\cos x} \, dx = \int_0^\pi \frac{\log(1)}{\cos x} \, dx = 0 \] Now substituting \(a = 0\) into our expression for \(I(a)\): \[ I(0) = \pi \sin^{-1}(0) + C = 0 + C \implies C = 0 \] ### Final Result Thus, we conclude that: \[ I(a) = \pi \sin^{-1}(a) \] Therefore, we have shown that \[ \int_0^\pi \frac{\log(1 + a \cos x)}{\cos x} \, dx = \pi \sin^{-1}(a) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)(dx)/(1+cos x)

int_(0)^( pi/4)(dx)/(1+cos x)

int_(0)^(pi) (1)/(5+2 cos x)dx

int_(0)^(pi//4)(dx)/((1+cos2x))

int_(0)^( pi)(dx)/(1+cos^(2)x)

int_(0)^( pi)(dx)/(1+sin x)

Evaluate int _(0)^(pi//2)(dx)/(1+ cos x)

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) (1)/(4+3 cos x)dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If|a|lt 1, show that int (0)^(pi)(log(1+a cos x ))/( cos x)dx =pi sin^...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |