Home
Class 12
MATHS
If f(x) =x + int(0)^(1) (xy^(2)+x^(2)y...

`If f(x) =x + int_(0)^(1) (xy^(2)+x^(2)y)(f(y)) dy, "find" f(x)` if x and y are independent.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equation provided: \[ f(x) = x + \int_{0}^{1} (xy^2 + x^2y) f(y) \, dy \] ### Step 1: Simplify the Integral We can separate the integral into two parts: \[ f(x) = x + x \int_{0}^{1} y^2 f(y) \, dy + x^2 \int_{0}^{1} y f(y) \, dy \] Let’s denote: \[ k = \int_{0}^{1} y^2 f(y) \, dy \quad \text{and} \quad c = \int_{0}^{1} y f(y) \, dy \] Then we can rewrite \(f(x)\) as: \[ f(x) = x + xk + x^2c \] ### Step 2: Factor Out x Now we can factor out \(x\): \[ f(x) = x(1 + k) + cx^2 \] ### Step 3: Identify the Form of f(x) This suggests that \(f(x)\) is a quadratic function of the form: \[ f(x) = Ax + Bx^2 \] where \(A = 1 + k\) and \(B = c\). ### Step 4: Substitute f(y) Back into the Integrals Now, substituting \(f(y) = Ay + By^2\) into the definitions of \(k\) and \(c\): 1. For \(k\): \[ k = \int_{0}^{1} y^2 (Ay + By^2) \, dy = A \int_{0}^{1} y^3 \, dy + B \int_{0}^{1} y^4 \, dy \] Calculating the integrals: \[ \int_{0}^{1} y^3 \, dy = \frac{1}{4}, \quad \int_{0}^{1} y^4 \, dy = \frac{1}{5} \] Thus, \[ k = A \cdot \frac{1}{4} + B \cdot \frac{1}{5} \] 2. For \(c\): \[ c = \int_{0}^{1} y (Ay + By^2) \, dy = A \int_{0}^{1} y^2 \, dy + B \int_{0}^{1} y^3 \, dy \] Calculating the integrals: \[ \int_{0}^{1} y^2 \, dy = \frac{1}{3} \] Thus, \[ c = A \cdot \frac{1}{3} + B \cdot \frac{1}{4} \] ### Step 5: Set Up the System of Equations Now we have two equations: 1. \(k = \frac{A}{4} + \frac{B}{5}\) 2. \(c = \frac{A}{3} + \frac{B}{4}\) Substituting \(k\) and \(c\) back into the expression for \(f(x)\): \[ f(x) = (1 + k)x + cx^2 \] ### Step 6: Solve the System We can substitute \(k\) and \(c\) into the equations and solve for \(A\) and \(B\). After solving the equations, we find: \[ A = \frac{180}{119}, \quad B = \frac{80}{119} \] ### Final Step: Write the Final Form of f(x) Thus, we can express \(f(x)\) as: \[ f(x) = \frac{180}{119} x + \frac{80}{119} x^2 \] ### Conclusion The final answer is: \[ \boxed{f(x) = \frac{180}{119} x + \frac{80}{119} x^2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

let f (x) = int _(0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Find the number of roots of the equation f (x) =0.

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then

If f(x) + f(y) = f(xy-sqrt(1-x^(2))sqrt(1-y^(2))), f(0) = (pi)/(2) and f is differentiable in (-1, 1). Then |lim_(x rarr 0)(2f(x)-pi)/(x)|=

If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2) , then find (dy)/(dx) at x=1 .

Let f((x+y)/(2))=(f(x)+f(y))/(2) and f(0)=b. Find f''(x) (where y is independent of x), when f(x) is differentiable.

Find f(x) if it satisfies the relation f(x) = e^(x) + int_(0)^(1) (x+ye^(x))f(y) dy .

Find f(x, y) if f(x + 2y, 2x + y) = 2xy.

If y=f(x) is the solution of equation ydx+dy=-e^(x)y^(2) dy, f(0)=1 and area bounded by the curve y=f(x), y=e^(x) and x=1 is A, then

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If f(x) =x + int(0)^(1) (xy^(2)+x^(2)y)(f(y)) dy, "find" f(x) if x a...

    Text Solution

    |

  2. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  3. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let f:RtoR be a function defined by f(x)={([x],xle2),(0,xgt2):} where ...

    Text Solution

    |

  10. If alpha=int0^1(e^(9x+3tan^((-1)x)))((12+9x^2)/(1+x^2))dxw h e r etan^...

    Text Solution

    |

  11. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  12. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  13. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  14. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  15. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  17. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  18. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  19. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  20. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  21. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |